Parameterization of daily amplitudes of surface air temperature in Greenland for application in mass balance calculations.

2018 ◽  
Vol XXII (4) ◽  
2018 ◽  
Vol 12 (4) ◽  
pp. 1211-1232 ◽  
Author(s):  
Ulrike Falk ◽  
Damián A. López ◽  
Adrián Silva-Busso

Abstract. The South Shetland Islands are located at the northern tip of the Antarctic Peninsula (AP). This region was subject to strong warming trends in the atmospheric surface layer. Surface air temperature increased about 3 K in 50 years, concurrent with retreating glacier fronts, an increase in melt areas, ice surface lowering and rapid break-up and disintegration of ice shelves. The positive trend in surface air temperature has currently come to a halt. Observed surface air temperature lapse rates show a high variability during winter months (standard deviations up to ±1.0K(100m)-1) and a distinct spatial heterogeneity reflecting the impact of synoptic weather patterns. The increased mesocyclonic activity during the wintertime over the past decades in the study area results in intensified advection of warm, moist air with high temperatures and rain and leads to melt conditions on the ice cap, fixating surface air temperatures to the melting point. Its impact on winter accumulation results in the observed negative mass balance estimates. Six years of continuous glaciological measurements on mass balance stake transects as well as 5 years of climatological data time series are presented and a spatially distributed glacier energy balance melt model adapted and run based on these multi-year data sets. The glaciological surface mass balance model is generally in good agreement with observations, except for atmospheric conditions promoting snow drift by high wind speeds, turbulence-driven snow deposition and snow layer erosion by rain. No drift in the difference between simulated mass balance and mass balance measurements can be seen over the course of the 5-year model run period. The winter accumulation does not suffice to compensate for the high variability in summer ablation. The results are analysed to assess changes in meltwater input to the coastal waters, specific glacier mass balance and the equilibrium line altitude (ELA). The Fourcade Glacier catchment drains into Potter cove, has an area of 23.6 km2 and is glacierized to 93.8 %. Annual discharge from Fourcade Glacier into Potter Cove is estimated to q¯=25±6hm3yr-1 with the standard deviation of 8 % annotating the high interannual variability. The average ELA calculated from our own glaciological observations on Fourcade Glacier over the time period 2010 to 2015 amounts to 260±20 m. Published studies suggest rather stable conditions of slightly negative glacier mass balance until the mid-1980s with an ELA of approx. 150 m. The calculated accumulation area ratio suggests dramatic changes in the future extent of the inland ice cap for the South Shetland Islands.


2014 ◽  
Vol 27 (15) ◽  
pp. 6051-6073 ◽  
Author(s):  
Sebastian H. Mernild ◽  
Glen E. Liston ◽  
Christopher A. Hiemstra

Abstract Mass changes and mass contribution to sea level rise from glaciers and ice caps (GIC) are key components of the earth’s changing sea level. GIC surface mass balance (SMB) magnitudes and individual and regional mean conditions and trends (1979–2009) were simulated for all GIC having areas greater or equal to 0.5 km2 in the Northern Hemisphere north of 25°N latitude (excluding the Greenland Ice Sheet). Recent datasets, including the Randolph Glacier Inventory (RGI; v. 2.0), the NOAA Global Land One-km Base Elevation Project (GLOBE), and the NASA Modern-Era Retrospective Analysis for Research and Applications (MERRA) products, together with recent SnowModel developments, allowed relatively high-resolution (1-km horizontal grid; 3-h time step) simulations of GIC surface air temperature, precipitation, sublimation, evaporation, surface runoff, and SMB. Simulated SMB outputs were calibrated against 1422 direct glaciological annual SMB observations of 78 GIC. The overall GIC mean annual and mean summer air temperature, runoff, and SMB loss increased during the simulation period. The cumulative GIC SMB was negative for all regions. The SMB contribution to sea level rise was largest from Alaska and smallest from the Caucasus. On average, the contribution to sea level rise was 0.51 ± 0.16 mm sea level equivalent (SLE) yr−1 for 1979–2009 and ~40% higher 0.71 ± 0.15 mm SLE yr−1 for the last decade, 1999–2009.


2013 ◽  
Vol 7 (3) ◽  
pp. 3163-3207 ◽  
Author(s):  
M. Geyer ◽  
D. Salas Y Melia ◽  
E. Brun ◽  
M. Dumont

Abstract. The aim of this study is to derive a realistic estimation of the Surface Mass Balance (SMB) of the Greenland ice sheet (GrIS) through statistical downscaling of Global Coupled Model (GCM) outputs. To this end, climate simulations performed with the CNRM-CM5.1 Atmosphere-Ocean GCM within the CMIP5 (Coupled Model Intercomparison Project phase 5) framework are used for the period 1850–2300. From the year 2006, two different emission scenarios are considered (RCP4.5 and RCP8.5). Simulations of SMB performed with the detailed snowpack model Crocus driven by CNRM-CM5.1 surface atmospheric forcings serve as a reference. On the basis of these simulations, statistical relationships between total precipitation, snow-ratio, snowmelt, sublimation and near-surface air temperature are established. This leads to the formulation of SMB variation as a function of temperature variation. Based on this function, a downscaling technique is proposed in order to refine 150 km horizontal resolution SMB output from CNRM-CM5.1 to a 15 km resolution grid. This leads to a much better estimation of SMB along the GrIS margins, where steep topography gradients are not correctly represented at low-resolution. For the recent past (1989–2008), the integrated SMB over the GrIS is respectively 309 and 243 Gt yr–1 for raw and downscaled CNRM-CM5.1. In comparison, the Crocus snowpack model forced with ERA-Interim yields a value of 245 Gt yr–1. The major part of the remaining discrepancy between Crocus and downscaled CNRM-CM5.1 SMB is due to the different snow albedo representation. The difference between the raw and the downscaled SMB tends to increase with near-surface air temperature via an increase in snowmelt.


2017 ◽  
Author(s):  
Ulrike Falk ◽  
Damián A. López ◽  
Adrián Silva-Busso

Abstract. The South Shetland Islands are located at the northern tip of the Antarctic Peninsula (AP). This region was subject to strong warming trends in the atmospheric surface layer. Surface air temperature increased about 3 K in 50 years, concurrent with retreating glacier fronts, an increase in melt areas, ice surface lowering and rapid break-up and disintegration of ice shelves. The positive trend in surface air temperature has currently come to a halt. Observed surface air temperature lapse rates show a high variability during winter months (standard deviations up to −1 K/100 m), and a distinct spatial heterogeneity reflecting the impact of synoptic weather patterns. The increased mesocyclonic activity during the winter time over the past decades in the study area results in intensified advection of warm, moist air with high temperatures and rain, and leads to melt conditions on the ice cap, fixating surface air temperatures to the melting point. Its impact on winter accumulation results in the observed negative mass balance estimates. Six years of continuous glaciological measurements on mass balance stake transects as well as five years of climatological data time series are presented and a spatially distributed glacier energy balance melt model adapted and run based on these multi-year data sets. The glaciological surface mass balance model is generally in good agreement with observations, except for atmospheric conditions promoting snow drift by high wind speeds, turbulence-driven snow deposition and snow layer erosion by rain. No drift can be seen over the course of the 5-year model run period. The winter accumulation does not suffice to compensate for the high variability in summer ablation. The results are analysed to assess changes in melt water input to the coastal waters, specific glacier mass balance and the equilibrium line altitude. The Fourcade Glacier catchment drains into Potter cove, has an area of 23.6 km2 and is to 93.8 % glacierized. Annual discharge from Fourcade Glacier into Potter Cove is estimated to q = 25 ± 6 hm3 per year with the standard deviation of 8% annotating the high interannual variability. The average equilibrium line altitude (ELA) calculated from own glaciological observations on Fourcade Glacier over the time period 2010 to 2015 amounts to ELA = 260 ± 20 m. Published studies suggest rather stable conditions of slightly negative glacier mass balance until the mid 80's with an ELA of approx. 150 m. The calculated accumulation area ratio suggests dramatic changes in the future extent of the inland ice cap for the South Shetland Islands.


Sign in / Sign up

Export Citation Format

Share Document