scholarly journals Multi-year analysis of distributed glacier mass balance modelling and equilibrium line altitude on King George Island, Antarctic Peninsula

2017 ◽  
Author(s):  
Ulrike Falk ◽  
Damián A. López ◽  
Adrián Silva-Busso

Abstract. The South Shetland Islands are located at the northern tip of the Antarctic Peninsula (AP). This region was subject to strong warming trends in the atmospheric surface layer. Surface air temperature increased about 3 K in 50 years, concurrent with retreating glacier fronts, an increase in melt areas, ice surface lowering and rapid break-up and disintegration of ice shelves. The positive trend in surface air temperature has currently come to a halt. Observed surface air temperature lapse rates show a high variability during winter months (standard deviations up to −1 K/100 m), and a distinct spatial heterogeneity reflecting the impact of synoptic weather patterns. The increased mesocyclonic activity during the winter time over the past decades in the study area results in intensified advection of warm, moist air with high temperatures and rain, and leads to melt conditions on the ice cap, fixating surface air temperatures to the melting point. Its impact on winter accumulation results in the observed negative mass balance estimates. Six years of continuous glaciological measurements on mass balance stake transects as well as five years of climatological data time series are presented and a spatially distributed glacier energy balance melt model adapted and run based on these multi-year data sets. The glaciological surface mass balance model is generally in good agreement with observations, except for atmospheric conditions promoting snow drift by high wind speeds, turbulence-driven snow deposition and snow layer erosion by rain. No drift can be seen over the course of the 5-year model run period. The winter accumulation does not suffice to compensate for the high variability in summer ablation. The results are analysed to assess changes in melt water input to the coastal waters, specific glacier mass balance and the equilibrium line altitude. The Fourcade Glacier catchment drains into Potter cove, has an area of 23.6 km2 and is to 93.8 % glacierized. Annual discharge from Fourcade Glacier into Potter Cove is estimated to q = 25 ± 6 hm3 per year with the standard deviation of 8% annotating the high interannual variability. The average equilibrium line altitude (ELA) calculated from own glaciological observations on Fourcade Glacier over the time period 2010 to 2015 amounts to ELA = 260 ± 20 m. Published studies suggest rather stable conditions of slightly negative glacier mass balance until the mid 80's with an ELA of approx. 150 m. The calculated accumulation area ratio suggests dramatic changes in the future extent of the inland ice cap for the South Shetland Islands.

2018 ◽  
Vol 12 (4) ◽  
pp. 1211-1232 ◽  
Author(s):  
Ulrike Falk ◽  
Damián A. López ◽  
Adrián Silva-Busso

Abstract. The South Shetland Islands are located at the northern tip of the Antarctic Peninsula (AP). This region was subject to strong warming trends in the atmospheric surface layer. Surface air temperature increased about 3 K in 50 years, concurrent with retreating glacier fronts, an increase in melt areas, ice surface lowering and rapid break-up and disintegration of ice shelves. The positive trend in surface air temperature has currently come to a halt. Observed surface air temperature lapse rates show a high variability during winter months (standard deviations up to ±1.0K(100m)-1) and a distinct spatial heterogeneity reflecting the impact of synoptic weather patterns. The increased mesocyclonic activity during the wintertime over the past decades in the study area results in intensified advection of warm, moist air with high temperatures and rain and leads to melt conditions on the ice cap, fixating surface air temperatures to the melting point. Its impact on winter accumulation results in the observed negative mass balance estimates. Six years of continuous glaciological measurements on mass balance stake transects as well as 5 years of climatological data time series are presented and a spatially distributed glacier energy balance melt model adapted and run based on these multi-year data sets. The glaciological surface mass balance model is generally in good agreement with observations, except for atmospheric conditions promoting snow drift by high wind speeds, turbulence-driven snow deposition and snow layer erosion by rain. No drift in the difference between simulated mass balance and mass balance measurements can be seen over the course of the 5-year model run period. The winter accumulation does not suffice to compensate for the high variability in summer ablation. The results are analysed to assess changes in meltwater input to the coastal waters, specific glacier mass balance and the equilibrium line altitude (ELA). The Fourcade Glacier catchment drains into Potter cove, has an area of 23.6 km2 and is glacierized to 93.8 %. Annual discharge from Fourcade Glacier into Potter Cove is estimated to q¯=25±6hm3yr-1 with the standard deviation of 8 % annotating the high interannual variability. The average ELA calculated from our own glaciological observations on Fourcade Glacier over the time period 2010 to 2015 amounts to 260±20 m. Published studies suggest rather stable conditions of slightly negative glacier mass balance until the mid-1980s with an ELA of approx. 150 m. The calculated accumulation area ratio suggests dramatic changes in the future extent of the inland ice cap for the South Shetland Islands.


2019 ◽  
Vol 9 (1) ◽  
pp. 1-12
Author(s):  
Zbyněk Engel ◽  
Filip Hrbáček ◽  
Kamil Láska ◽  
Daniel Nývlt ◽  
Zdeněk Stachoň

This study presents surface mass balance of two small glaciers on James Ross Island calculated using constant and zonally-variable conversion factors. The density of 500 and 900 kg·m–3 adopted for snow in the accumulation area and ice in the ablation area, respectively, provides lower mass balance values that better fit to the glaciological records from glaciers on Vega Island and South Shetland Islands. The difference between the cumulative surface mass balance values based on constant (1.23 ± 0.44 m w.e.) and zonally-variable density (0.57 ± 0.67 m w.e.) is higher for Whisky Glacier where a total mass gain was observed over the period 2009–2015. The cumulative surface mass balance values are 0.46 ± 0.36 and 0.11 ± 0.37 m w.e. for Davies Dome, which experienced lower mass gain over the same period. The conversion approach does not affect much the spatial distribution of surface mass balance on glaciers, equilibrium line altitude and accumulation-area ratio. The pattern of the surface mass balance is almost identical in the ablation zone and very similar in the accumulation zone, where the constant conversion factor yields higher surface mass balance values. The equilibrium line altitude and accumulation-area ratio determined for the investigated glaciers differ by less than 2m and 0.01, respectively. The annual changes of equilibrium line altitude and the mean values determined over the period 2009–2015 for Whisky Glacier (311 ± 16 m a.s.l.) and Davies Dome (393 ± 18 m a.s.l.) coincide with the values reported from Bahía del Diablo Glacier on Vega Island but differ from the glaciological records on South Shetland Islands.


1998 ◽  
Vol 27 ◽  
pp. 105-109 ◽  
Author(s):  
Wen Jiahong ◽  
Kang Jiancheng ◽  
Han Jiankang ◽  
Xie Zichu ◽  
Liu Leibao ◽  
...  

The King George Island ice cap, South Shetland Islands, Antarctica, was studied between 1985 and 1992. At the steady-state equilibrium-line altitude of the ice cap, the mean annual temperature is -3.6°C, the mean summer (December-February) temperature is 0°C and annual precipitation is 800 mm w.e. Precipitation increases rapidly with elevation, and annual accumulation rate at the Main Dome summit reaches 2480 mm a−1. Between 1985 and 1991 the equilibrium-line elevation averaged 140-150 m a.s.l. The ice cap has been in an overall stable state for the past 20 years, going from a weak negative to a small positive mass imbalance as increased precipitation outweighs the effects of rising temperatures. Temperatures at the bottom of the active layer over most of the accumulation area are close to 0°C, with colder temperatures down to -1.9°C in the ablation zone. Soluble impurities in the ice cap are mainly from marine sources, while undissolved mineral material amounts to only 15-54% of the total microparticle content.


1982 ◽  
Vol 3 ◽  
pp. 233-238 ◽  
Author(s):  
Olav Orheim ◽  
L.S. Govorukha

This paper presents mass-balance results from Deception Island for 1968–69 to 1973–74, from King George Island for the balance years 1969–70 and 1970–71, and from Livingston Island from 1971–72 to 1973–74. The accumulation areas of all localities are in the soaked fades, with a firn/ice transition at King George Island at 12 to 20 m depth. Of the glaciers studied, only “Gl” on Deception Island terminates wholly on land and has a relatively large ablation area. The mass-balance curves are similar for King George Island and Livingston Island, with equilibrium lines at around 150 m elevation. “Gl“ on Deception Island has more negative summer balances, and the equilibrium line ranged from 275 to 370 m during the six balance years. Here, there were no years of positive net mass balance, and large negative net values during the 1970–71 to 1972–73 balance years. This resulted from a lowered albedo caused by ash from the August 1970 eruption. Ash layers from the Deception Island eruptions are also observed on Livingston Island and King George Island, where they form stratigraphic markers in the accumulation areas of the glaciers. Annual balance variations from 1957–58 to 1970–71, based on stratigraphic studies at Deception Island and King George Island, show good correlations, indicating that the variations reflect changes in regional climate.


1995 ◽  
Vol 21 ◽  
pp. 399-405 ◽  
Author(s):  
Martin Hoelzle ◽  
Wilfried Haeberli

Models are developed to simulate changes in permafrost distribution and glacier size in mountain areas. The models exclusively consider equilibrium conditions. As a first application, the simplified assumption is used that one single parameter (mean annual air temperature) is changing. Permafrost distribution patterns are estimated for a test area (Corvatsch-Furtschellas) and for the whole Upper Engadin region (eastern Swiss Alps) using a relation between permafrost occurrence as indicated by BTS (bottom temperature of the winter snow cover) measurements, potential direct solar radiation and mean annual air temperature. Glacier sizes were assessed in the same region with data from the World Glacier Inventory database. The simulations for the glaciers are based on the assumption that an increase or decrease in equilibrium-line altitude (ELA) would lead to a mass-balance change. Model calculations for potential future changes in ELA and mass balance include estimated developments of area, length and volume. Mass changes were also calculated for the time period 1850–1973 on the basis of measured cumulative length change, glacier length and estimated ablation at the glacier terminus. For the time period since 1850, permafrost became inactive or disappeared in about 15% of the area originally underlain by permafrost in the whole Upper Engadin region, and mean annual glacier mass balance was calculated as −0.26 to −0.46 m w.e.a−1 for the larger glaciers in the same area. The estimated loss in glacier volume since 1850 lies between 55% and 66% of the original value. With an assumed increase in mean annual air temperature of +3°C, the area of supposed permafrost occurrence would possibly be reduced by about 65% with respect to present-day conditions and only three glaciers would continue to partially exist.


2015 ◽  
Vol 11 (2) ◽  
pp. 603-636 ◽  
Author(s):  
C. Bravo ◽  
M. Rojas ◽  
B. M. Anderson ◽  
A. N. Mackintosh ◽  
E. Sagredo ◽  
...  

Abstract. Glacier behaviour during the mid-Holocene (MH, 6000 year BP) in the Southern Hemisphere provides observational data to constrain our understanding of the origin and propagation of palaeo-climatic signals. We examine the climatic forcing of glacier expansion in the MH by evaluating modelled glacier equilibrium line altitude (ELA) and climate conditions during the MH compared with pre-industrial time (PI, year 1750) in the mid latitudes of the Southern Hemisphere, specifically in Patagonia and the South Island of New Zealand. Climate conditions for the MH are obtained from PMIP2 models simulations, which in turn force a simple glacier mass balance model to simulate changes in equilibrium-line altitude during this period. Climate conditions during the MH show significantly (p ≤ 0.05) colder temperatures in summer, autumn and winter, and significantly (p ≤ 0.05) warmer temperatures in spring. These changes are a consequence of insolation differences between the two periods. Precipitation does not show significant changes, but exhibits a temporal pattern with less precipitation from August to September and more precipitation from October to April during the MH. In response to these climatic changes, glaciers in both analysed regions have an ELA that is 15–33 m lower than PI during the MH. The main causes of this difference are the colder temperature during the MH, reinforcing previous results that mid-latitude glaciers are more sensitive to temperature change compared to precipitation changes. Differences in temperature have a dual effect on mass balance. First, during summer and early autumn less energy is available for melting. Second in late autumn and winter, lower temperatures cause more precipitation to fall as snow rather than rain, resulting in more accumulation and higher surface albedo. For these reasons, we postulate that the modelled ELA changes, although small, may help to explain larger glacier extents observed in the mid Holocene in both South America and New Zealand.


1996 ◽  
Vol 42 (142) ◽  
pp. 548-563 ◽  
Author(s):  
J.Graham Cogley ◽  
W. P. Adams ◽  
M. A. Ecclestone ◽  
F. Jung-Rothenhäusler ◽  
C. S. L. Ommanney

AbstractWhite Glacier is a valley glacier at 79.5°N with an area of 38.7 km2. Its mass balance has been measured, over 32 years with a 3 year gap, by standard techniques using the stratigraphic system with a stake density of the order of one stake per km2. Errors in stake mass balance are about ±(200–250) mm, due largely to the local unrepresentativeness of measurements. Errors in the whole-glacier mass balanceBare of the same order as single-slake errors. However, the lag-1 autocorrelation in the time series ofBis effectively zero, so it consists of independent random samples, and the error in the long-term “balance normal”〈B〉is noticeably less.〈B〉is −100 ± 48 mm. The equilibrium-line altitude (ELA) averages 970 m. with a range of 470–1400 m. Mass balance is well correlated with ELA, but detailed modelling shows that the equilibrium line is undetectable on visible-band satellite images. A reduced network of a few stakes could give acceptable but less accurate estimates of the mass balance, as could estimates based on data from a weather station 120 km away. There is no evidence of a trend in the mass balance of White Glacier. To detect a climatologically plausible trend will require a ten-fold reduction of measurement error, a conclusion which may well apply to most estimates of mass balance based on similar stake densities.


2021 ◽  
Author(s):  
Florian von Ah ◽  
Evan Miles ◽  
Inés Dussaillant ◽  
Thomas E. Shaw ◽  
Peter Molnar ◽  
...  

<p>Andean glaciers are an important part of the water cycle of high elevation catchments and supply fresh water to large populations downstreams, especially during dry periods. They are experiencing dramatic mass loss due to a warming climate, and their catchments are among the most vulnerable. However, relatively few glaciers are monitored systematically due to accessibility and cost, limiting our understanding of mass accumulation and ablation rates. In this study, we estimated the decadal altitudinal mass balance of glaciers in the Maipo River Basin in central Chile and the Rio Santa Basin in the Cordillera Blanca in Peru for the periods of 2000-2009 and 2009-2018. We accomplished this by 1) correcting current ice thickness estimates for recent thinning, 2) deriving glacier velocities from Landsat data using the Glacier Image Velocimetry (GIV) toolbox, and 3) modelling ice flux divergence using the continuity approach to correct observed glacier thinning for flow. We validated the altitudinally-resolved mass balance with the few available observational datasets, then determined each domain’s equilibrium line altitude, accumulation area ratio, and ablation balance ratio for each period, which identifies the portion of annual ablation that is compensated by accumulation.</p><p>Our results highlight the influence of the Chilean ‘Mega-drought’ (2010-present) on glacier health in the Maipo River Basin, causing a dramatic reduction in glacier mass balance (decrease of 0.5 m w.e. a-1) below 5000 m a.s.l., raising the regional equilibrium line altitude from 4210 m a.s.l. during 2000-2009 to 4470 m a.s.l. ± 15 m during 2009-2018, and lowering accumulation area ratios from 0.65 to 0.55. In contrast, the Santa Basin glaciers showed very similar altitudinal mass balance patterns for both decades, with equilibrium line altitudes at ~5100 m a.s.l. and accumulation area ratios of ~0.5, indicating a basin already out of balance prior to 2000. </p><p>Large populations rely on glaciers’ water supply in both basins and the two basins’ glaciers contrast in terms of water supply sustainability. In the Maipo Basin, glaciers experienced little mass change in the first period (ablation balance ratio of 1.01) and experienced only slightly unsustainable mass loss in the second period (ablation balance ratio of 0.9) despite the Megadrought. The ablation balance ratio for the Santa Basin was lower for both periods (0.75) indicating that these glaciers are moderately unhealthy despite their recent retreat, and water managers should expect further reductions in glacier water supply. Our results will help to constrain glacier models to understand the timing of glacier change for this data-sparse region.</p>


2010 ◽  
Vol 49 (1) ◽  
pp. 47-67 ◽  
Author(s):  
Sebastian H. Mernild ◽  
Glen E. Liston

Abstract In many applications, a realistic description of air temperature inversions is essential for accurate snow and glacier ice melt, and glacier mass-balance simulations. A physically based snow evolution modeling system (SnowModel) was used to simulate 8 yr (1998/99–2005/06) of snow accumulation and snow and glacier ice ablation from numerous small coastal marginal glaciers on the SW part of Ammassalik Island in SE Greenland. These glaciers are regularly influenced by inversions and sea breezes associated with the adjacent relatively low temperature and frequently ice-choked fjords and ocean. To account for the influence of these inversions on the spatiotemporal variation of air temperature and snow and glacier melt rates, temperature inversion routines were added to MircoMet, the meteorological distribution submodel used in SnowModel. The inversions were observed and modeled to occur during 84% of the simulation period. Modeled inversions were defined not to occur during days with strong winds and high precipitation rates because of the potential of inversion breakup. Field observations showed inversions to extend from sea level to approximately 300 m MSL, and this inversion level was prescribed in the model simulations. Simulations with and without the inversion routines were compared. The inversion model produced air temperature distributions with warmer lower-elevation areas and cooler higher-elevation areas than without inversion routines because of the use of cold sea-breeze-based temperature data from underneath the inversion. This yielded an up to 2 weeks earlier snowmelt in the lower areas and up to 1–3 weeks later snowmelt in the higher-elevation areas of the simulation domain. Averaged mean annual modeled surface mass balance for all glaciers (mainly located above the inversion layer) was −720 ± 620 mm w.eq. yr−1 (w.eq. is water equivalent) for inversion simulations, and −880 ± 620 mm w.eq. yr−1 without the inversion routines, a difference of 160 mm w.eq. yr−1. The annual glacier loss for the two simulations was 50.7 × 106 and 64.4 × 106 m3 yr−1 for all glaciers—a difference of ∼21%. The average equilibrium line altitude (ELA) for all glaciers in the simulation domain was located at 875 and 900 m MSL for simulations with or without inversion routines, respectively.


1995 ◽  
Vol 21 ◽  
pp. 399-405 ◽  
Author(s):  
Martin Hoelzle ◽  
Wilfried Haeberli

Models are developed to simulate changes in permafrost distribution and glacier size in mountain areas. The models exclusively consider equilibrium conditions. As a first application, the simplified assumption is used that one single parameter (mean annual air temperature) is changing.Permafrost distribution patterns are estimated for a test area (Corvatsch-Furtschellas) and for the whole Upper Engadin region (eastern Swiss Alps) using a relation between permafrost occurrence as indicated by BTS (bottom temperature of the winter snow cover) measurements, potential direct solar radiation and mean annual air temperature. Glacier sizes were assessed in the same region with data from the World Glacier Inventory database. The simulations for the glaciers are based on the assumption that an increase or decrease in equilibrium-line altitude (ELA) would lead to a mass-balance change. Model calculations for potential future changes in ELA and mass balance include estimated developments of area, length and volume. Mass changes were also calculated for the time period 1850–1973 on the basis of measured cumulative length change, glacier length and estimated ablation at the glacier terminus.For the time period since 1850, permafrost became inactive or disappeared in about 15% of the area originally underlain by permafrost in the whole Upper Engadin region, and mean annual glacier mass balance was calculated as −0.26 to −0.46 m w.e.a−1 for the larger glaciers in the same area. The estimated loss in glacier volume since 1850 lies between 55% and 66% of the original value. With an assumed increase in mean annual air temperature of +3°C, the area of supposed permafrost occurrence would possibly be reduced by about 65% with respect to present-day conditions and only three glaciers would continue to partially exist.


Sign in / Sign up

Export Citation Format

Share Document