scholarly journals A UNIFIED ELECTRIC POWER SYSTEM AND ELECTRIC PROPULSION SYSTEM OF THE PASSENGER SHIP �KNYAGINYA OLGA� TRIALS RESULTS

Author(s):  
Andrey V. Grigoryev ◽  
◽  
Semen V. Vorobyev ◽  
2013 ◽  
Vol 732-733 ◽  
pp. 1212-1215
Author(s):  
Gui Wen Kang ◽  
Yu Hu ◽  
Ya Dong Li ◽  
Wen Hui Jiang

The propulsion system of ultralight electric aircraft is one of the general aviation technology development directions. It has the advantages such as light pollution, low noise, high energy utilization ratio, simple structure, easy maintenance, high reliability, less heat radiation, little operation cost and so on. Combined with the certain type of ultralight aircraft design parameters, the layout of aircraft electric propulsion, the principles and steps of the parameter matching of electric propulsion system were presented. The method of parameter matching and performance verification of electric propulsion system was put forward. The feasibility of the system is verified from the point of dynamic property. The study of parameter matching of electric propulsion system could not only provide basis for the integrated optimization for electric power system, but also evaluate the performance of the system simulation as reference.


2021 ◽  
Vol 1 (395) ◽  
pp. 132-140
Author(s):  
I. Kalinin ◽  

Object and purpose of research. This paper discusses electric propulsion system of leader icebreaker. Its purpose was to develop mathematical and computer-based model of electric propulsion drive powered by asynchronous motor with three stator windings for further investigation of steady, transitional, asymmetric and emergency operation scenarios of electric power and propulsion system for the leader icebreaker. Materials and methods. Hardware and methods for computer-based simulation of complex engineering structures. Main results. Development of the mathematical model representing asynchronous motor with three windings in phase coordinates. Computational studies on direct startup of 15 MW propulsion motor, as well as on steady and transitional operational conditions of ship electric power system consisting of 36 MW synchronous genset, two-winding transformers and electric propulsion drive with 15 MW asynchronous motor in phase coordinates with three stator windings and three-level frequency converter. Calculation of voltage non-sinusoidality ratio for MSB buses with operation of 15 MW propulsion motor driven by 36 MW synchronous genset. Conclusion. Mathematical model of asynchronous motor suggested in this paper could be used to calculate steady and transitional operation scenarios of marine power systems with frequency-controlled three-winding asynchronous motor, as well as to calculate electromechanical and electromagnetic processes and refine frequency control algorithms. This is especially relevant because each of the asynchronous electric machines used in the electromechanical assemblies of leader icebreaker propulsion motors has three stator windings, and this icebreaker is the first experience of applying a 15 MW marine electric drive.


1997 ◽  
Author(s):  
Gary Bennett ◽  
Henry Brandhorst, Jr. ◽  
C. Bankston ◽  
R. Sovie ◽  
Gary Bennett ◽  
...  

Author(s):  
A. E. Savenko ◽  
P. S. Savenko

THE PURPOSE. Consider the use of propeller electric installations as part of ship electrical complexes with a single electric power system. Highlight the rudder drives as a special type of electric propulsion of ships in northern latitudes. Investigate unified electric power systems with a propeller electric installation for the existence of power exchange oscillations in them. Propose methods and means for eliminating power oscillations in such systems.METHODS. To carry out the research, a single electric power system with electric rudder propellers of the world's only asymmetric icebreaker Baltika was considered. All the main elements of such system have been analyzed in detail. Experimental studies were carried out aimed at studying the operating modes of a unified electric power system.RESULTS. Experimental oscillograms of currents of parallel operating diesel-generator sets in different modes have been obtained. The existence of exchange and in-phase power oscillations during the operation of the unified electric power system of the icebreaker "Baltika" is noted. The data on the negative influence of power oscillations on the operation of the electrical complex of the icebreaker are presented.CONCLUSION. The use of ice-class sea vessels is an extremely important task for the Russian Federation. The installation of blocks that eliminate exchange and in-phase power oscillations will improve the reliability and efficiency of the use of marine vessels with electric rudder propellers when servicing hydrocarbon production on the Arctic shelf.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Dionysios V. Spyropoulos ◽  
Epaminondas D. Mitronikas

Electric propulsion systems are today widely applied in modern ships, including transport ships and warships. The ship of the future will be fully electric, and not only its propulsion system but also all the other services will depend on electric power. The robust and reliable operation of the ship’s power system is essential. In this work, a review on the mechanical and electrical faults of electric machines that are used in electric ships is presented.


Sign in / Sign up

Export Citation Format

Share Document