scholarly journals Bond Strength of Artificial Teeth to Various Denture Base Materials. Effect of Thermal Cycling.

1996 ◽  
Vol 40 (4) ◽  
pp. 749-758
Author(s):  
Daichi Arai
2018 ◽  
Vol 11 (4) ◽  
pp. 2181-2190
Author(s):  
Humam M. Al-somaiday ◽  
M. A. Mohammed Moudhaffer ◽  
Mahmood Jasim Alsamydai

One of the major problem affecting the denture function is the detachment of the artificial teeth from denture as a result to the higher chewing capacity that will rise the risk of artificial teeth displacement. Displacement of the teeth may precede by changing in the material properties affecting the denture function that is why surface roughness and hardness considered as a predictor for the material behaviors and performance. Replacing a denture may cause a burden to the patients, hence, the material and fabrication coasts of dentures should be considered as one of the major factors affecting the selection of the denture base material, as in some cases a base material with impressive propertied limitedly used because of its expenses.[1] In this study, shear bond strength with acrylic teeth, hardness, surface roughness and the net benefits, associated with alternatives for achieving defined treatment objective, were evaluated by comparing some properties of three different denture base materials with the cost of each one in Iraq. A total of (90) specimens of polycarbonate, injectable acrylic and conventional heat cured acrylic were fabricated according to manufacturer’s instructions and divided into (3) groups, (30) specimens for each testing group i.e. the shear bond strength with acrylic teeth, shore D hardness and surface roughness (10 specimens for each testing material). the total cost of each specimens group was collected and calculated to evaluate the overall cost benefit of each material. Highly significant differences (P≤ 0.01) between all the (3) experimental materials were noticed after analyzing each test's results with descriptive statistical analysis, one-way ANOVA and post-hoc LSD, except for the shore D hardness whereas a non-significant differences(P> 0.05) between heat cured and injectable acrylic was found. The heat cured acrylic has the highest mean value of the shear bond strength with acrylic teeth (516.1 N) followed by the injectable acrylic with (329.9 N) mean value while the lowest mean value was for the Polycarbonate (180.1 N). Furthermore, the injectable acrylic has the highest mean value in shore D hardness (91.96), followed by the heat cured acrylic (91.5), then Polycarbonate (82.94). As for surface roughness, the Polycarbonate has the highest mean value (0.31703) followed by the injectable acrylic (0.2129), then the heat cured acrylic (0.10367). Finally, Polycarbonate has the highest mean value of the specimens’ cost in Iraq (10.022 US dollar /specimens), followed by the injectable acrylic (8.695 US dollar /specimens) then the heat cured acrylic (3.243 US dollar /specimens). All thermoplastic materials included in this study (Injectable acrylic and Polycarbonate) exhibited higher cost with lower properties in comparison with heat cured acrylic material for the selected tests.


2015 ◽  
Vol 25 (7) ◽  
pp. 576-579 ◽  
Author(s):  
Ana Carolina Pero ◽  
Priscila Mattos Scavassin ◽  
Élen Massaro Nunes ◽  
Vivian Barnabé Policastro ◽  
Gabriela Giro ◽  
...  

2018 ◽  
Vol 2018 ◽  
pp. 1-5 ◽  
Author(s):  
Sandra Lúcia Andrade de Freitas ◽  
William Cunha Brandt ◽  
Milton Edson Miranda ◽  
Rafael Pino Vitti

Objective. To evaluate the shear bond strength between different artificial teeth and denture base polymerized by two polymerization methods submitted to thermocycling. Materials and Methods. Two acrylic resins were selected according to the polymerization method (water-bath and microwave), and four different artificial teeth (Biotone, Dentsply; Trilux, Vipi Dent; Premium 8, Heraeus Kulzer; Soluut PX, Yamahachi) were also tested. The polymerization of the acrylic resin was performed by using conventional cycle (8 h at 74°C) in water-bath and using two cycles (20 min at 270 W + 5 min at 360 W) by the microwave method. The shear bond strength was evaluated after 24 h of water storage at 37°C (immediately) and after the thermocycling test (5,000 cycles, 5–55°C). The shear bond strength (n=10) was performed using a universal testing machine (Instron 4411) at a crosshead speed of 1.0 mm/min. Modes of failures were classified as cohesive and adhesive. The data (MPa) were statistically analyzed by three-way ANOVA, and the mean values were compared by the Tukey test (α = 0.05). Results. In general, the polymerization by microwave showed the highest shear bond strength values, and Trilux artificial teeth had the lowest bond strength values (p<0.05). Thermocycling did not affect the shear bond strength (p<0.05). There was a predominance of cohesive failures for all groups. Conclusions. The chemical composition of the artificial teeth affects the bond strength, and the microwave method is preferable to perform the acrylic resin polymerization.


2018 ◽  
Vol 17 ◽  
pp. 1-9 ◽  
Author(s):  
Etiene Faria Aguiar ◽  
Rafaella Tonani ◽  
Fabiana de Goes Paiola ◽  
Michelle Alexandra Chinelatti ◽  
Carolina Noronha Ferraz de Arruda ◽  
...  

Aim: The aim of this study was to evaluate the bond strength of artificial teeth to different types of denture base resins when submitted to thermomechanical cycling (TMC). Methods: Sixty artificial mandibular first molars (Trilux, Vipi) were randomly divided into 3 groups according to denture base acrylic resins (Vipi Wave, Vipi Cril, and Vipi Cril Plus, Vipi). The teeth were fixed onto self-polymerizing acrylic resin bars (0.5 cm2 cross-section x 2 cm height), and the set was included in a metal flask using dental stone/silicone. After the dental stone was set, the bar was removed, and the denture base resin was packed and processed according to the group studied (Vipi Wave: 180 W/20 minutes + 540W/5 minutes; Vipi Cril and Vipi Cril Plus: Water bath at 74ºC for 9h). After polymerization, the samples were divided into 2 groups (n=10), according to the TMC treatment received (simulation of 5 years of mastication or not). The samples were submitted to tensile bond strength test (1 mm/min), and the data (MPa) were statistically analyzed (2-way ANOVA, Bonferroni, α=0.05). The fracture interfaces were evaluated using a stereomicroscope (50x). Results: The bond strength results showed no statistically significant difference (p>0.05) between the resins studied. TMC was significant (p<0.05), demonstrating lower values for the bond strength of artificial teeth to Vipi Cril Plus. The predominant fracture type was cohesive in resin. Conclusions: It was concluded that there is no difference in bond strength between artificial teeth and the resins used for denture base. However, TMC decreases the bond strength values of artificial teeth and crosslink thermo-polymerizable acrylic resin.


Sign in / Sign up

Export Citation Format

Share Document