Circulating Tumor Cells With Epithelial–to–mesenchymal Transition Phenotypes Associated With Inferior Outcomes in Primary Breast Cancer

2019 ◽  
Vol 39 (4) ◽  
pp. 1829-1837 ◽  
Author(s):  
MICHAL MEGO ◽  
MARIAN KARABA ◽  
GABRIEL MINARIK ◽  
JURAJ BENCA ◽  
JURISOVA SILVIA ◽  
...  
2021 ◽  
Vol 10 (4) ◽  
pp. 684
Author(s):  
Lorena Alexandra Lisencu ◽  
Eduard-Alexandru Bonci ◽  
Alexandru Irimie ◽  
Ovidiu Balacescu ◽  
Cosmin Lisencu

Breast cancer is the most frequent form of cancer among women and is one of the leading causes of death. Two routes of the metastatic process have been described: linear and parallel progression. A key factor is represented by circulating tumor cells (CTCs). CTCs detach from the primary tumor or develop from cancer stem cells (CSCs) that undergo epithelial-to-mesenchymal transition (EMT). CTCs migrate to the distant site where the reverse process occurs and a new tumor arises. One of the key problems of metastatic disease is chemoresistance, which leads to treatment failure and, eventually, death. The aim of this review is to present up-to-date data regarding the role of CTCs in chemoresistance in metastatic breast cancer (MBC) patients. A search in Cochrane Library and MEDLINE databases was performed. A total of 125 articles were identified. The results of the final 12 eligible studies revealed that CTCs having stem cell features and those with mesenchymal features are aggressive subtypes of cells that survive chemotherapy, being responsible for chemoresistance and thus for disease progression in MBC patients. The hemodynamic shear stress, alongside dynamic changes among CTCs during the disease, is also an important disease progression factor.


Sign in / Sign up

Export Citation Format

Share Document