scholarly journals Передача крутящего момента проводящей частице с использованием силы Лоренца

Author(s):  
А.И. Грачев

In the paper the concept of conductive particle rotation in DC electric field with including the Lorentz force providing generation of electric dipole moment of the particle is for the first time discussed. Some models of the torque transfer to spherical and cylindrical particles based on of the Hall effect at usual geometry and with additional electric field application and also in the case of implementation of the photoelectromagnetic effect are presented.

2018 ◽  
Vol 60 (4) ◽  
pp. 666
Author(s):  
А.И. Грачев

AbstractRotation of a spherical particle in a static electric field and under steady irradiation that induces an electric dipole moment in the particle is studied for the first time. Along with the general treatment of the phenomenon, we analyze possible mechanisms underlying the photoinduction of dipole moment in the particle. Estimations of the angular velocity and the power expended by the rotating particle are provided. The indicated characteristics reach their maximum values if the size of particles is within the range of 10 nm to 10 μm.


Author(s):  
А.И. Грачев

AbstractThe rotation of a spherical particle in a constant electric field (an effect found earlier) has been analyzed. The particle is illuminated to induce the electric dipole moment of the sphere. The dynamics of the rotation effect has been considered in general terms to refine conditions for adiabatic rotation. The features of the particle’s nonadiabatic rotation have been demonstrated with a sphere placed in a medium with an infinitesimal viscosity. It has been shown that the nonadiabatic rotation dynamics to a great extent depends on a relationship between the electrical and photoinduced dipole moments of the sphere. The rotation dynamics of a particle with a slightly nonspherical shape has been briefly analyzed.


2017 ◽  
Vol 31 (22) ◽  
pp. 1750157
Author(s):  
Jaciéli Evangelho de Figueiredo ◽  
Leandro Barros da Silva

We report in the present paper an ab initio study on the electronic and structural properties of phospholipidic membranes under the influence of electric fields. We show that the external field alters the charge distribution of the molecule leading to a modification in the electric dipole moment. The torque on the phospholipid may then cause a transmembranar stress, which by its turn, weakens the membrane allowing to the formation of a pore.


2001 ◽  
Vol 16 (supp01b) ◽  
pp. 690-693 ◽  
Author(s):  
Y. K. SEMERTZIDIS ◽  
H. BROWN ◽  
G. T. DANBY ◽  
J. W. JACKSON ◽  
R. LARSEN ◽  
...  

We are proposing a new method to carry out a dedicated search for a permanent electric dipole moment (EDM) of the muon with a sensitivity at a level of 10-24e · cm in both statistics and systematics. This will make the sensitivity of the EDM experiment to non-standard physics better than the sensitivity of the present muon g-2 experiment, assuming the CP violating phase of the probed physics is of order one. The experimental design exploits the strong motional electric field sensed by relativistic particles in a magnetic storage ring.1,2 As a key feature, a novel technique has been invented in which the g-2 precession is compensated with a radial electric field.


Author(s):  
А.И. Грачев

AbstractImplementation of the well-known phenomenon of Quincke rotation is proposed, which may be called the “photoinduced Quincke rotation (PIQR) effect.” The PIQR effect is based on the previously discovered phenomenon of rotation of a spherical particle in a stationary electric field under continuous irradiation inducing an electric dipole moment in the particle.


2016 ◽  
Vol 113 (27) ◽  
pp. 7438-7442 ◽  
Author(s):  
Gordon Baym ◽  
D. H. Beck

The neutron, in addition to possibly having a permanent electric dipole moment as a consequence of violation of time-reversal invariance, develops an induced electric dipole moment in the presence of an external electric field. We present here a unified nonrelativistic description of these two phenomena, in which the dipole moment operator, D→, is not constrained to lie along the spin operator. Although the expectation value of D→ in the neutron is less than 10−13 of the neutron radius, rn, the expectation value of D→ 2 is of order rn2. We determine the spin motion in external electric and magnetic fields, as used in past and future searches for a permanent dipole moment, and show that the neutron electric polarizability, although entering the neutron energy in an external electric field, does not affect the spin motion. In a simple nonrelativistic model we show that the expectation value of the permanent dipole is, to lowest order, proportional to the product of the time-reversal-violating coupling strength and the electric polarizability of the neutron.


Sign in / Sign up

Export Citation Format

Share Document