scholarly journals Акустические аномалии в твердых растворах SrTiO-=SUB=-3-=/SUB=--BiFeO-=SUB=-3-=/SUB=-

2018 ◽  
Vol 60 (1) ◽  
pp. 107
Author(s):  
Е. Смирнова ◽  
А. Сотников ◽  
Н. Зайцева ◽  
H. Schmidt

AbstractThe results of acoustic investigations of solid solutions SrTiO_3−BiFeO_3 in the temperature range from 100 to 650 K have been presented. The measurements of the velocity and attenuation of the longitudinal ultrasonic mode at a frequency of 10 MHz were carried out by the pulse-echo method. The observed anomalies in velocity and attenuation correlate with the maxima of the dielectric constant in the temperature range of the relaxor state. In addition, the attenuation peaks in the temperature range 400–600 K, which define Burns and T* temperatures, which are characteristic of relaxors, have been identified. The obtained results have allowed the clarifying of the phase diagram of the solid solution system SrTiO_3−BiFeO_3.

1971 ◽  
Vol 24 (7) ◽  
pp. 1325 ◽  
Author(s):  
JE Fergusson ◽  
DE Scaife

The cubic lattice parameters for the solid solution system K2IrCl6- K2PtCl6 vary approximately linearly with composition from a0 = 9.765�0.001 Ǻ for K2,IrCl6, to a0 = 9.748�0.001 Ǻ for K2PtCl6. The 35Cl n.q.r, frequencies show shifts from the frequencies observed in the pure compounds, these shifts being approximately linear with composition at each of the temperatures 77�K, 201�K, and 298�K. The shifts in frequency on going from 0-100% Pt are, for the chlorine atoms bonded to the iridium, +93 kHz, and for the chlorine atoms bonded to the platinum, +84 kHz. ��� The infrared stretching frequencies of the MCl62- groups also show shifts which are approximately linear with composition. The extrapolated shifts in going from 0-100% Pt are +11 cm-1 and +4.5 cm-1 for the Pt-Cl and Ir-Cl stretching frequencies, respectively. The n.q.r. and infrared results are best accounted for by small changes in the M-Cl bond lengths within the MCl62- group, with concurrent changes in a0, and possibly also in the positional parameter u. Re-examination of the variation of magnetic susceptibility with composition in the K2IrCl6-K2PtCl6 system is also reported, and reasons proposed for the form of this variation. ��� 35Cl n.q.r. frequencies are reported for Cs2IrCl6.


2012 ◽  
Vol 512-515 ◽  
pp. 1351-1354
Author(s):  
Chun Huy Wang

Extending the investigations on (Na0.5K0.5)NbO3-based solid solution for lead-free piezoelectric ceramics, this paper consider the complex solid-solution system (Na0.5K0.5)NbO3–Bi0.5(Na0.93K0.07)0.5TiO3 [NKN-BNKT]. (Na0.5K0.5)NbO3 with 2 ~ 6 mol% Bi0.5(Na0.93K0.07)0.5TiO3 has been prepared following the conventional mixed oxide process. A morphotropic phase boundary (MPB) between orthorhombic (O) and rhombohedral (R) was found at the composition 0.98NKN-0.02BNKT with correspondingly enhanced dielectric and piezoelectric properties. The electromechanical coupling factor and dielectric constant are higher for compositions near the MPB. The dielectric constant (KT33), planar coupling coefficient (kp) and thickness coupling coefficient (kt)of 0.98NKN-0.02BNKT ceramics were 1040, 47% and 48%, respectively.


2011 ◽  
Vol 230-232 ◽  
pp. 12-15
Author(s):  
Chun Huy Wang

Extending the investigations on (Na0.5K0.5)NbO3-based solid solution for lead-free piezoelectric ceramics, this paper consider the complex solid-solution system (Na0.5K0.5)NbO3–Bi0.5(Na0.80K0.20)0.5TiO3[NKN-BNKT]. (Na0.5K0.5)NbO3with 2 ~ 6 mol% Bi0.5(Na0.80K0.20)0.5TiO3has been prepared following the conventional mixed oxide process. A morphotropic phase boundary (MPB) between orthorhombic (O) and tetragonal (T) was found at the composition 0.97NKN-0.03BNKT with correspondingly enhanced dielectric and piezoelectric properties. The electromechanical coupling factor and dielectric constant are higher for compositions near the MPB. The dielectric constant (εr), planar coupling coefficient (kp) and thickness coupling coefficient (kt)of 0.97NKN-0.03BNKT ceramics were 1483, 32% and 31%, respectively.


1983 ◽  
Vol 18 (2) ◽  
pp. 181-187 ◽  
Author(s):  
J.G. Bednorz ◽  
K.A. Müller ◽  
H. Arend ◽  
H. Gränicher

Sign in / Sign up

Export Citation Format

Share Document