scholarly journals PHYSICAL AND THERMAL PROPERTIES OF RICE HUSK ASH BLENDED HIGH STRENGTH CONCRETE AT ELEVATED TEMPERATURE

Crystals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 932
Author(s):  
Huu-Bang Tran ◽  
Van-Bach Le ◽  
Vu To-Anh Phan

This paper presents the experimental results of the production of Nano-SiO2 (NS) from rice husk ash (RHA) and the engineering properties of High Strength Concrete (HSC) containing various NS contents. Firstly, the mesoporous silica nanoparticles were effectively modulated from RHA using NaOH solution, and subsequently precipitated with HCl solution until the pH value reached 3. The optimum synthesis for the manufacture of SiO2 nanoparticles in the weight ratio of RHA/NaOH was 1:2.4, and the product was calcined at 550 °C for 2 h. The EDX, XRD, SEM, TEM, FT-IR, and BET techniques were used to characterize the NS products. Results revealed that the characteristics of the obtained NS were satisfactory for civil engineering materials. Secondly, the HSC was manufactured with the aforementioned NS contents. NS particles were added to HSC at various replacements of 0, 0.5, 1.0, 1.5, 2.0, and 2.5% by the mass of the binder. The water-to-binder ratio was remained at 0.3 for all mixes. The specimens were cured for 3, 7, 28, 25 days under 25 ± 2 °C and a relative humidity of 95% before testing compressive and flexural strengths. Chloride ion permeability was investigated at 28 and 56 days. Results indicated that the addition of NS dramatically enhanced compressive strength, flexural strength, chloride ion resistance, and reduced chloride ion permeability compared to control concrete. The optimal NS content was found at 1.5%, which yielded the highest strength and lowest chloride ion permeability. Next, the development of flexural and compressive strengths with an age curing of 3–28 days can be analytically described by a logarithmic equation with R2 ≥ 0.74. The ACI code was used, and the compressive strength at t-day was determined based on 28 days with R2 ≥ 0.95. The study is expected to solve the redundancy of waste RHA in southern Vietnam by making RHA a helpful additive when producing high-strength concrete and contributing meaningfully to a sustainable environment.


2021 ◽  
Vol 233 ◽  
pp. 01053
Author(s):  
Yang Ming ◽  
Pengliang Sun ◽  
Ping Chen ◽  
Yuanhao Wang ◽  
Ling Li ◽  
...  

The effect of grinding time on the properties of low-temperature rice husk ash was experimentally studied, and the feasibility of using rice husk ash instead of silica fume to prepare concrete was studied by comparison with silica fume. The results showed that the best grinding time of rice husk ash is 50 minutes, the concrete with similar properties can be prepared by replacing silica fume with super-fine rice husk ash, and the same enhancement effect can be achieved when replacing silica fume with more than 5%, and the performance was consistent.


1996 ◽  
Vol 10 (7) ◽  
pp. 521-526 ◽  
Author(s):  
Muhammad Shoaib Ismail ◽  
A.M. Waliuddin

2007 ◽  
Vol 29 (7) ◽  
pp. 566-574 ◽  
Author(s):  
Graciela Giaccio ◽  
Gemma Rodríguez de Sensale ◽  
Raúl Zerbino

2013 ◽  
Vol 6 (5) ◽  
pp. 811-820 ◽  
Author(s):  
M. B. Barbosa ◽  
A. M. PEREIRA ◽  
J. L. Akasaki ◽  
C. F. Fioriti ◽  
J. V. Fazzan ◽  
...  

The paper discusses the application of High Strength Concrete (HSC) technology for concrete production with the incorporation of Rice Husk Ash (RHA) residues by replacing a bulk of the material caking and rubber tires with partial aggregate volume, assessing their influence on the mechanical properties and durability. For concrete with RHA and rubber, it was possible to reduce the brittleness by increasing the energy absorbing capacity. With respect to abrasion, the RHA and rubber concretes showed lower mass loss than the concrete without residues, indicating that this material is attractive to be used in paving. It is thus hoped that these residues may represent a technological and ecological alternative for the production of concrete in construction works.


Sign in / Sign up

Export Citation Format

Share Document