scholarly journals Cluster Detection Mechanisms for Syndromic Surveillance Systems: Systematic Review and Framework Development

10.2196/11512 ◽  
2020 ◽  
Vol 6 (2) ◽  
pp. e11512 ◽  
Author(s):  
Prosper Kandabongee Yeng ◽  
Ashenafi Zebene Woldaregay ◽  
Terje Solvoll ◽  
Gunnar Hartvigsen

Background The time lag in detecting disease outbreaks remains a threat to global health security. The advancement of technology has made health-related data and other indicator activities easily accessible for syndromic surveillance of various datasets. At the heart of disease surveillance lies the clustering algorithm, which groups data with similar characteristics (spatial, temporal, or both) to uncover significant disease outbreak. Despite these developments, there is a lack of updated reviews of trends and modelling options in cluster detection algorithms. Objective Our purpose was to systematically review practically implemented disease surveillance clustering algorithms relating to temporal, spatial, and spatiotemporal clustering mechanisms for their usage and performance efficacies, and to develop an efficient cluster detection mechanism framework. Methods We conducted a systematic review exploring Google Scholar, ScienceDirect, PubMed, IEEE Xplore, ACM Digital Library, and Scopus. Between January and March 2018, we conducted the literature search for articles published to date in English in peer-reviewed journals. The main eligibility criteria were studies that (1) examined a practically implemented syndromic surveillance system with cluster detection mechanisms, including over-the-counter medication, school and work absenteeism, and disease surveillance relating to the presymptomatic stage; and (2) focused on surveillance of infectious diseases. We identified relevant articles using the title, keywords, and abstracts as a preliminary filter with the inclusion criteria, and then conducted a full-text review of the relevant articles. We then developed a framework for cluster detection mechanisms for various syndromic surveillance systems based on the review. Results The search identified a total of 5936 articles. Removal of duplicates resulted in 5839 articles. After an initial review of the titles, we excluded 4165 articles, with 1674 remaining. Reading of abstracts and keywords eliminated 1549 further records. An in-depth assessment of the remaining 125 articles resulted in a total of 27 articles for inclusion in the review. The result indicated that various clustering and aberration detection algorithms have been empirically implemented or assessed with real data and tested. Based on the findings of the review, we subsequently developed a framework to include data processing, clustering and aberration detection, visualization, and alerts and alarms. Conclusions The review identified various algorithms that have been practically implemented and tested. These results might foster the development of effective and efficient cluster detection mechanisms in empirical syndromic surveillance systems relating to a broad spectrum of space, time, or space-time.

Author(s):  
Prosper Kandabongee Yeng ◽  
Ashenafi Zebene Woldaregay ◽  
Terje Solvoll ◽  
Gunnar Hartvigsen

BACKGROUND The time lag in detecting disease outbreaks remains a threat to global health security. The advancement of technology has made health-related data and other indicator activities easily accessible for syndromic surveillance of various datasets. At the heart of disease surveillance lies the clustering algorithm, which groups data with similar characteristics (spatial, temporal, or both) to uncover significant disease outbreak. Despite these developments, there is a lack of updated reviews of trends and modelling options in cluster detection algorithms. OBJECTIVE Our purpose was to systematically review practically implemented disease surveillance clustering algorithms relating to temporal, spatial, and spatiotemporal clustering mechanisms for their usage and performance efficacies, and to develop an efficient cluster detection mechanism framework. METHODS We conducted a systematic review exploring Google Scholar, ScienceDirect, PubMed, IEEE Xplore, ACM Digital Library, and Scopus. Between January and March 2018, we conducted the literature search for articles published to date in English in peer-reviewed journals. The main eligibility criteria were studies that (1) examined a practically implemented syndromic surveillance system with cluster detection mechanisms, including over-the-counter medication, school and work absenteeism, and disease surveillance relating to the presymptomatic stage; and (2) focused on surveillance of infectious diseases. We identified relevant articles using the title, keywords, and abstracts as a preliminary filter with the inclusion criteria, and then conducted a full-text review of the relevant articles. We then developed a framework for cluster detection mechanisms for various syndromic surveillance systems based on the review. RESULTS The search identified a total of 5936 articles. Removal of duplicates resulted in 5839 articles. After an initial review of the titles, we excluded 4165 articles, with 1674 remaining. Reading of abstracts and keywords eliminated 1549 further records. An in-depth assessment of the remaining 125 articles resulted in a total of 27 articles for inclusion in the review. The result indicated that various clustering and aberration detection algorithms have been empirically implemented or assessed with real data and tested. Based on the findings of the review, we subsequently developed a framework to include data processing, clustering and aberration detection, visualization, and alerts and alarms. CONCLUSIONS The review identified various algorithms that have been practically implemented and tested. These results might foster the development of effective and efficient cluster detection mechanisms in empirical syndromic surveillance systems relating to a broad spectrum of space, time, or space-time.


2019 ◽  
Vol 35 (17) ◽  
pp. 3110-3118
Author(s):  
Angela Noufaily ◽  
Roger A Morbey ◽  
Felipe J Colón-González ◽  
Alex J Elliot ◽  
Gillian E Smith ◽  
...  

Abstract Motivation Public health authorities can provide more effective and timely interventions to protect populations during health events if they have effective multi-purpose surveillance systems. These systems rely on aberration detection algorithms to identify potential threats within large datasets. Ensuring the algorithms are sensitive, specific and timely is crucial for protecting public health. Here, we evaluate the performance of three detection algorithms extensively used for syndromic surveillance: the ‘rising activity, multilevel mixed effects, indicator emphasis’ (RAMMIE) method and the improved quasi-Poisson regression-based method known as ‘Farrington Flexible’ both currently used at Public Health England, and the ‘Early Aberration Reporting System’ (EARS) method used at the US Centre for Disease Control and Prevention. We model the wide range of data structures encountered within the daily syndromic surveillance systems used by PHE. We undertake extensive simulations to identify which algorithms work best across different types of syndromes and different outbreak sizes. We evaluate RAMMIE for the first time since its introduction. Performance metrics were computed and compared in the presence of a range of simulated outbreak types that were added to baseline data. Results We conclude that amongst the algorithm variants that have a high specificity (i.e. >90%), Farrington Flexible has the highest sensitivity and specificity, whereas RAMMIE has the highest probability of outbreak detection and is the most timely, typically detecting outbreaks 2–3 days earlier. Availability and implementation R codes developed for this project are available through https://github.com/FelipeJColon/AlgorithmComparison Supplementary information Supplementary data are available at Bioinformatics online.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
A. L. Donaldson ◽  
J. L. Hardstaff ◽  
J. P. Harris ◽  
R. Vivancos ◽  
S. J. O’Brien

Abstract Background Syndromic surveillance systems are an essential component of public health surveillance and can provide timely detection of infectious disease cases and outbreaks. Whilst surveillance systems are generally embedded within healthcare, there is increasing interest in novel data sources for monitoring trends in illness, such as over-the-counter purchases, internet-based health searches and worker absenteeism. This systematic review considers the utility of school attendance registers in the surveillance of infectious disease outbreaks and occurrences amongst children. Methods We searched eight databases using key words related to school absence, infectious disease and syndromic surveillance. Studies were limited to those published after 1st January 1995. Studies based in nursery schools or higher education settings were excluded. Article screening was undertaken by two independent reviewers using agreed eligibility criteria. Data extraction was performed using a standardised data extraction form. Outcomes included estimates of absenteeism, correlation with existing surveillance systems and associated lead or lag times. Results Fifteen studies met the inclusion criteria, all of which were concerned with the surveillance of influenza. The specificity of absence data varied between all-cause absence, illness absence and syndrome-specific absence. Systems differed in terms of the frequency of data submissions from schools and the level of aggregation of the data. Baseline rates of illness absence varied between 2.3–3.7%, with peak absences ranging between 4.1–9.8%. Syndrome-specific absenteeism had the strongest correlation with other surveillance systems (r = 0.92), with illness absenteeism generating mixed results and all-cause absenteeism performing the least well. A similar pattern of results emerged in terms of lead and lag times, with influenza-like illness (ILI)-specific absence providing a 1–2 week lead time, compared to lag times reported for all-cause absence data and inconsistent results for illness absence data. Conclusion Syndrome-specific school absences have potential utility in the syndromic surveillance of influenza, demonstrating good correlation with healthcare surveillance data and a lead time of 1–2 weeks ahead of existing surveillance measures. Further research should consider the utility of school attendance registers for conditions other than influenza, to broaden our understanding of the potential application of this data for infectious disease surveillance in children. Systematic review registration PROSPERO 2019 CRD42019119737.


2020 ◽  
Vol 26 (9) ◽  
pp. 2196-2200
Author(s):  
Emily Alsentzer ◽  
Sarah-Blythe Ballard ◽  
Joan Neyra ◽  
Delphis M. Vera ◽  
Victor B. Osorio ◽  
...  

2017 ◽  
Vol 32 (6) ◽  
pp. 667-672 ◽  
Author(s):  
Dan Todkill ◽  
Paul Loveridge ◽  
Alex J. Elliot ◽  
Roger A. Morbey ◽  
Obaghe Edeghere ◽  
...  

AbstractIntroductionThe Public Health England (PHE; United Kingdom) Real-Time Syndromic Surveillance Team (ReSST) currently operates four national syndromic surveillance systems, including an emergency department system. A system based on ambulance data might provide an additional measure of the “severe” end of the clinical disease spectrum. This report describes the findings and lessons learned from the development and preliminary assessment of a pilot syndromic surveillance system using ambulance data from the West Midlands (WM) region in England.Hypothesis/ProblemIs an Ambulance Data Syndromic Surveillance System (ADSSS) feasible and of utility in enhancing the existing suite of PHE syndromic surveillance systems?MethodsAn ADSSS was designed, implemented, and a pilot conducted from September 1, 2015 through March 1, 2016. Surveillance cases were defined as calls to the West Midlands Ambulance Service (WMAS) regarding patients who were assigned any of 11 specified chief presenting complaints (CPCs) during the pilot period. The WMAS collected anonymized data on cases and transferred the dataset daily to ReSST, which contained anonymized information on patients’ demographics, partial postcode of patients’ location, and CPC. The 11 CPCs covered a broad range of syndromes. The dataset was analyzed descriptively each week to determine trends and key epidemiological characteristics of patients, and an automated statistical algorithm was employed daily to detect higher than expected number of calls. A preliminary assessment was undertaken to assess the feasibility, utility (including quality of key indicators), and timeliness of the system for syndromic surveillance purposes. Lessons learned and challenges were identified and recorded during the design and implementation of the system.ResultsThe pilot ADSSS collected 207,331 records of individual ambulance calls (daily mean=1,133; range=923-1,350). The ADSSS was found to be timely in detecting seasonal changes in patterns of respiratory infections and increases in case numbers during seasonal events.ConclusionsFurther validation is necessary; however, the findings from the assessment of the pilot ADSSS suggest that selected, but not all, ambulance indicators appear to have some utility for syndromic surveillance purposes in England. There are certain challenges that need to be addressed when designing and implementing similar systems.TodkillD, LoveridgeP, ElliotAJ, MorbeyRA, EdeghereO, Rayment-BishopT, Rayment-BishopC, ThornesJE, SmithG. Utility of ambulance data for real-time syndromic surveillance: a pilot in the West Midlands region, United Kingdom. Prehosp Disaster Med. 2017;32(6):667–672.


2015 ◽  
Vol 7 (1) ◽  
Author(s):  
David Atrubin ◽  
Michael Wiese

This roundtable will focus on how traditional emergency department syndromic surveillance systems should be used to conduct daily or periodic disease surveillance.  As outbreak detection using these systems has demonstrated an equivocal track record, epidemiologists have sought out other interesting uses for these systems.  Over the numerous years of the International Society for Disease Surveillance (ISDS) Conference, many of these studies have been presented; however, there has been a dearth of discussion related to how these systems should be used. This roundtable offers a forum to discuss best practices for the routine use of emergency department syndromic surveillance data.


Author(s):  
Robert Mathes ◽  
Jessica Sell ◽  
Anthony W. Tam ◽  
Alison Levin-Rector ◽  
Ramona Lall

The New York City (NYC) syndromic surveillance system has been monitoring syndromes from city emergency department (ED) visits since 2001. We conducted an evaluation of statistical aberration detection methods currently in use in our system as well as alternative methods, applying six temporal and four spatio-temporal aberration detection methods to two years of ED visits in NYC spiked with synthetic outbreaks. We found performance varied between the methods in regard to sensitivity, specificity, and timeliness, and implementation of these methods will depend on needs, frequency of signals, and technical skill.


2019 ◽  
Vol 11 (1) ◽  
Author(s):  
Ta-Chien Chan ◽  
Yung-Chu Teng ◽  
Yen-Hua Chu ◽  
Tzu-Yu Lin

ObjectiveSentinel physician surveillance in the communities has played an important role in detecting early aberrations in epidemics. The traditional approach is to ask primary care physicians to actively report some diseases such as influenza-like illness (ILI), and hand, foot, and mouth disease (HFMD) to health authorities on a weekly basis. However, this is labor-intensive and time-consuming work. In this study, we try to set up an automatic sentinel surveillance system to detect 23 syndromic groups in the communites.IntroductionIn December 2009, Taiwan’s CDC stopped its sentinel physician surveillance system. Currently, infectious disease surveillance systems in Taiwan rely on not only the national notifiable disease surveillance system but also real-time outbreak and disease surveillance (RODS) from emergency rooms, and the outpatient and hospitalization surveillance system from National Health Insurance data. However, the timeliness of data exchange and the number of monitored syndromic groups are limited. The spatial resolution of monitoring units is also too coarse, at the city level. Those systems can capture the epidemic situation at the nationwide level, but have difficulty reflecting the real epidemic situation in communities in a timely manner. Based on past epidemic experience, daily and small area surveillance can detect early aberrations. In addition, emerging infectious diseases do not have typical symptoms at the early stage of an epidemic. Traditional disease-based reporting systems cannot capture this kind of signal. Therefore, we have set up a clinic-based surveillance system to monitor 23 kinds of syndromic groups. Through longitudinal surveillance and sensitive statistical models, the system can automatically remind medical practitioners of the epidemic situation of different syndromic groups, and will help them remain vigilant to susceptible patients. Local health departments can take action based on aberrations to prevent an epidemic from getting worse and to reduce the severity of the infected cases.MethodsWe collected data on 23 syndromic groups from participating clinics in Taipei City (in northern Taiwan) and Kaohsiung City (in southern Taiwan). The definitions of 21 of those syndromic groups with ICD-10 diagnoses were adopted from the International Society for Disease Surveillance (https://www.surveillancerepository.org/icd-10-cm-master-mapping-reference-table). The definitions of the other two syndromic groups, including dengue-like illness and enterovirus-like illness, were suggested by infectious disease and emergency medicine specialists.An enhanced sentinel surveillance system named “Sentinel plus” was designed for sentinel clinics and community hospitals. The system was designed with an interactive interface and statistical models for aberration detection. The data will be computed for different combinations of syndromic groups, age groups and gender groups. Every day, each participating clinic will automatically upload the data to the provider of the health information system (HIS) and then the data will be transferred to the research team.This study was approved by the committee of the Institutional Review Board (IRB) at Academia Sinica (AS-IRB02-106262, and AS-IRB02-107139). The databases we used were all stripped of identifying information and thus informed consent of participants was not required.ResultsThis system started to recruit the clinics in May 2018. As of August 2018, there are 89 clinics in Kaohsiung City and 33 clinics and seven community hospitals in Taipei City participating in Sentinel plus. The recruiting process is still ongoing. On average, the monitored volumes of outpatient visits in Kaohsiung City and Taipei City are 5,000 and 14,000 per day.Each clinic is provided one list informing them of the relative importance of syndromic groups, the age distribution of each syndromic group and a time-series chart of outpatient rates at their own clinic. In addition, they can also view the village-level risk map, with different alert colors. In this way, medical practitioners can know what’s going on, not only in their own clinics and communities but also in the surrounding communities.The Department of Health (Figure 1) can know the current increasing and decreasing trends of 23 syndromic groups by red and blue color, respectively. The spatial resolution has four levels including city, township, village and clinic. The map and bar chart represent the difference in outpatient rate between yesterday and the average for the past week. The line chart represents the daily outpatient rates for one selected syndromic group in the past seven days. The age distribution of each syndromic group and age-specific outpatient rates in different syndromic groups can be examined.ConclusionsSentinel plus is still at the early stage of development. The timeliness and the accuracy of the system will be evaluated by comparing with some syndromic groups in emergency rooms and the national notifiable disease surveillance system. The system is designed to assist with surveillance of not only infectious diseases but also some chronic diseases such as asthma. Integrating with external environmental data, Sentinel plus can alert public health workers to implement better intervention for the right population.References1. James W. Buehler AS, Marc Paladini, Paula Soper, Farzad Mostashari: Syndromic Surveillance Practice in the United States: Findings from a Survey of State, Territorial, and Selected Local Health Departments. Advances in Disease Surveillance 2008, 6(3).2. Ding Y, Fei Y, Xu B, Yang J, Yan W, Diwan VK, Sauerborn R, Dong H: Measuring costs of data collection at village clinics by village doctors for a syndromic surveillance system — a cross sectional survey from China. BMC Health Services Research 2015, 15:287.3. Kao JH, Chen CD, Tiger Li ZR, Chan TC, Tung TH, Chu YH, Cheng HY, Liu JW, Shih FY, Shu PY et al.: The Critical Role of Early Dengue Surveillance and Limitations of Clinical Reporting -- Implications for Non-Endemic Countries. PloS one 2016, 11(8):e0160230.4. Chan TC, Hu TH, Hwang JS: Daily forecast of dengue fever incidents for urban villages in a city. International Journal of Health Geographics 2015, 14:9.5. Chan TC, Teng YC, Hwang JS: Detection of influenza-like illness aberrations by directly monitoring Pearson residuals of fitted negative binomial regression models. BMC Public Health 2015, 15:168.6. Ma HT: Syndromic surveillance system for detecting enterovirus outbreaks evaluation and applications in public health. Taipei, Taiwan: National Taiwan University; 2007. 


Sign in / Sign up

Export Citation Format

Share Document