scholarly journals Clinical Effectiveness of Different Technologies for Diabetes in Pregnancy: Systematic Literature Review (Preprint)

2020 ◽  
Author(s):  
Claudia Eberle ◽  
Maxine Loehnert ◽  
Stefanie Stichling

BACKGROUND Hyperglycemia in pregnancy occurs worldwide and is closely associated with health issues in women and their offspring, such as pregnancy and birth complications, respectively, as well as comorbidities, such as metabolic and cardiovascular diseases. To optimize the management of diabetic pregnancies, sustainable strategies are urgently needed. Investigation of constantly evolving technologies for diabetes that help to manage pregnancy and health is required. OBJECTIVE We aimed to conduct a systematic review to assess the clinical effectiveness of technologies for diabetes in pregnancy. METHODS Relevant databases including MEDLINE (PubMed), Cochrane Library, Embase, CINAHL, and Web of Science Core Collection were searched in September 2020 for clinical studies (2008-2020). Findings were organized by type of diabetes, type of technology, and outcomes (glycemic control, pregnancy- and birth-related outcomes, and neonatal outcomes). Study quality was assessed using Effective Public Health Practice Project criteria. RESULTS We identified 15 randomized controlled trials, 3 randomized crossover trials, 2 cohort studies, and 2 controlled clinical trials. Overall, 9 studies focused on type 1 diabetes, 0 studies focused on gestational diabetes, and 3 studies focused on both type 1 diabetes and type 2 diabetes. We found that 9 studies were strong quality, 11 were moderate quality, and 2 were weak quality. Technologies for diabetes seemed to have particularly positive effects on glycemic control in all types of diabetes, shown by some strong and moderate quality studies. Positive trends in pregnancy-related, birth-related, and neonatal outcomes were observed. CONCLUSIONS Technologies have the potential to effectively improve the management of diabetes during pregnancy. Further research on the clinical effectiveness of these technologies is needed, especially in pregnant women with type 2 diabetes.

10.2196/24982 ◽  
2021 ◽  
Vol 23 (4) ◽  
pp. e24982
Author(s):  
Claudia Eberle ◽  
Maxine Loehnert ◽  
Stefanie Stichling

Background Hyperglycemia in pregnancy occurs worldwide and is closely associated with health issues in women and their offspring, such as pregnancy and birth complications, respectively, as well as comorbidities, such as metabolic and cardiovascular diseases. To optimize the management of diabetic pregnancies, sustainable strategies are urgently needed. Investigation of constantly evolving technologies for diabetes that help to manage pregnancy and health is required. Objective We aimed to conduct a systematic review to assess the clinical effectiveness of technologies for diabetes in pregnancy. Methods Relevant databases including MEDLINE (PubMed), Cochrane Library, Embase, CINAHL, and Web of Science Core Collection were searched in September 2020 for clinical studies (2008-2020). Findings were organized by type of diabetes, type of technology, and outcomes (glycemic control, pregnancy- and birth-related outcomes, and neonatal outcomes). Study quality was assessed using Effective Public Health Practice Project criteria. Results We identified 15 randomized controlled trials, 3 randomized crossover trials, 2 cohort studies, and 2 controlled clinical trials. Overall, 9 studies focused on type 1 diabetes, 0 studies focused on gestational diabetes, and 3 studies focused on both type 1 diabetes and type 2 diabetes. We found that 9 studies were strong quality, 11 were moderate quality, and 2 were weak quality. Technologies for diabetes seemed to have particularly positive effects on glycemic control in all types of diabetes, shown by some strong and moderate quality studies. Positive trends in pregnancy-related, birth-related, and neonatal outcomes were observed. Conclusions Technologies have the potential to effectively improve the management of diabetes during pregnancy. Further research on the clinical effectiveness of these technologies is needed, especially in pregnant women with type 2 diabetes.


2018 ◽  
Vol 66 (3) ◽  

The prevalence of obesity is increasing world-wide. Obesity is associated with a plethora of metabolic and clinical constraints, which result in a higher risk for the development of cardiovascular complications and metabolic disease, particularly insulin resistance and type 2 diabetes. Obesity is an acknowledged determinant of glycemic control in patients with type 1 diabetes and accounts for the majority of premature death due to cardiovascular events. Physical exercise is generally recommended in patients with diabetes in order to prevent the development of or reduce existing obesity, as adopted by every international treatment guideline so far. Regular physical exercise has a beneficial impact on body composition, cardiovascular integrity, insulin sensitivity and quality of life. However, only a minority of patients participates in regular physical exercise, due to individual or ­disease-related barriers. In type 2 diabetes, there is robust evidence for beneficial effects of physical exercise on glycemic control, cardiovascular health and the development of diabetes-related long-term complications. In type 1 diabetes and patients treated with insulin, a higher risk for exercise-­related hypoglycemia has to be considered, which requires certain prerequisites and adequate adaptions of insulin ­dosing. Current treatment guidelines do only incompletely address the development of exercise-related hypoglycemia. However, every patient with diabetes should participate in regular physical exercise in order to support and enable ­sufficient treatment and optimal glycemic control.


2021 ◽  
Vol 9 (1) ◽  
pp. e002035
Author(s):  
Merel M Ruissen ◽  
Hannah Regeer ◽  
Cyril P Landstra ◽  
Marielle Schroijen ◽  
Ingrid Jazet ◽  
...  

IntroductionLockdown measures have a profound effect on many aspects of daily life relevant for diabetes self-management. We assessed whether lockdown measures, in the context of the COVID-19 pandemic, differentially affect perceived stress, body weight, exercise and related this to glycemic control in people with type 1 and type 2 diabetes.Research design and methodsWe performed a short-term observational cohort study at the Leiden University Medical Center. People with type 1 and type 2 diabetes ≥18 years were eligible to participate. Participants filled out online questionnaires, sent in blood for hemoglobin A1c (HbA1c) analysis and shared data of their flash or continuous glucose sensors. HbA1c during the lockdown was compared with the last known HbA1c before the lockdown.ResultsIn total, 435 people were included (type 1 diabetes n=280, type 2 diabetes n=155). An increase in perceived stress and anxiety, weight gain and less exercise was observed in both groups. There was improvement in glycemic control in the group with the highest HbA1c tertile (type 1 diabetes: −0.39% (−4.3 mmol/mol) (p<0.0001 and type 2 diabetes: −0.62% (−6.8 mmol/mol) (p=0.0036). Perceived stress was associated with difficulty with glycemic control (p<0.0001).ConclusionsAn increase in perceived stress and anxiety, weight gain and less exercise but no deterioration of glycemic control occurs in both people with relatively well-controlled type 1 and type 2 diabetes during short-term lockdown measures. As perceived stress showed to be associated with glycemic control, this provides opportunities for healthcare professionals to put more emphasis on psychological aspects during diabetes care consultations.


2022 ◽  
Author(s):  
Faisal S. Malik ◽  
Katherine A. Sauder ◽  
Scott Isom ◽  
Beth A. Reboussin ◽  
Dana Dabelea ◽  
...  

<b>OBJECTIVES: </b>To describe temporal trends and correlates of glycemic control in youth and young adults (YYA) with youth-onset diabetes. <p><b>RESEARCH DESIGN AND METHODS: </b>The study included 6,492 participants with type 1 or type 2 diabetes from the SEARCH for Diabetes in Youth study. Participant visit data were categorized into time periods 2002-2007, 2008-2013 and 2014-2019, diabetes durations of 1-4, 5-9, and 10+ years, and age groups 1-9, 10-14, 15-19, 20-24, 25+ years. Participants contributed one randomly selected data point to each duration and age group per time period. Multivariable regression models were used to test differences in hemoglobin A<sub>1c</sub> (HbA<sub>1c</sub>) over time by diabetes type. Models were adjusted for site, age, sex, race/ethnicity, household income, health insurance status, insulin regimen and diabetes duration, overall and stratified for each duration and age group.</p> <p><b>RESULTS: </b>Adjusted mean HbA<sub>1c</sub> for the 2014-2019 cohort of YYA with type 1 diabetes was 8.8%±0.04%. YYA with type 1 diabetes in the 10-14, 15-19, and 20-24 age groups from the 2014-2019 cohort had worse glycemic control than the 2002-2007 cohort. Race/ethnicity, household income and treatment regimen predicted differences in glycemic control in 2014-2019 type 1 diabetes participants. Adjusted mean HbA1c was 8.6%±0.12% for 2014-2019 YYA with type 2 diabetes. Participants age 25+ with type 2 diabetes had worse glycemic control relative to the 2008-2013 cohort. Only treatment regimen was associated with differences in glycemic control in type 2 diabetes participants.</p> <p><b>CONCLUSIONS: </b>Despite advances in diabetes technologies, medications, and dissemination of more aggressive glycemic targets, many current YYA are less likely to achieve desired glycemic control relative to earlier cohorts.</p> <br>


Author(s):  
Michael Permezel ◽  
Alexis Shub

The importance of diabetes in pregnancy arises through two unrelated phenomena: an increased predisposition to impaired glucose tolerance in late pregnancy and an adverse impact of the increased glucose on important obstetric outcomes. There are marked differences in clinical outcomes and management between pregnancies in which a clinically significant impairment of glucose tolerance was first noticed during pregnancy (‘gestational diabetes mellitus’) and those where type 1 or type 2 diabetes mellitus had been known prior to pregnancy (‘prepregnancy diabetes’). Historically, GDM has been defined as the diagnosis of clinically significant impaired glucose tolerance in pregnancy in a woman not previously known to be diabetic. This has recently been complicated by recognizing that some diabetes mellitus will present for the first time in pregnancy and lack of clarity as to where the lower threshold for diagnosis should best be placed. Type 1 diabetes is present in approximately 0.2% of pregnant women, and the numbers are largely stable. In contrast, type 2 diabetes was once uncommon in pregnancy but is now also as high as 0.2%. This is likely to continue to increase as increased numbers of overweight and obese women enter the reproductive years. Prepregnancy diabetes provides the model of how pregnancy and maternal disease impact on each other, and how good preconception, antenatal and intrapartum care can make an enormous difference for these women and their babies.


2006 ◽  
Vol 195 (6) ◽  
pp. S158
Author(s):  
Celeste Durnwald ◽  
Albert Franco ◽  
Mark Landon

2007 ◽  
Vol 17 (12) ◽  
pp. 339-344 ◽  
Author(s):  
R. Chaudry ◽  
P. Gilby ◽  
P.V. Carroll

Sign in / Sign up

Export Citation Format

Share Document