scholarly journals The QardioArm App in the Assessment of Blood Pressure and Heart Rate: Reliability and Validity Study (Preprint)

2017 ◽  
Author(s):  
Victoria Mazoteras Pardo ◽  
Marta E Losa Iglesias ◽  
José López Chicharro ◽  
Ricardo Becerro de Bengoa Vallejo

BACKGROUND Self-measurement of blood pressure is a priority strategy for managing blood pressure. OBJECTIVE The aim of this study was to evaluate the reliability and validity of blood pressure and heart rate following the European Society of Hypertension’s international validation protocol, as measured with the QardioArm, a fully automatic, noninvasive wireless blood pressure monitor and mobile app. METHODS A total of 100 healthy volunteers older than 25 years from the general population of Ciudad Real, Spain, participated in a test-retest validation study with two measurement sessions separated by 5 to 7 days. In each measurement session, seven systolic blood pressure, diastolic blood pressure, and heart rate assessments were taken, alternating between the two devices. The test device was the QardioArm and the previously validated criterion device was the Omron M3. Sessions took place at a single study site with an evaluation room that was maintained at an appropriate temperature and kept free from noises and distractions. RESULTS The QardioArm displayed very consistent readings both within and across sessions (intraclass correlation coefficients=0.80-0.95, standard errors of measurement=2.5-5.4). The QardioArm measurements corresponded closely to those from the criterion device (r>.96) and mean values for the two devices were nearly identical. The QardioArm easily passed all validation standards set by the European Society of Hypertension International Protocol. CONCLUSIONS The QardioArm mobile app has validity and it can be used free of major measurement error.

2018 ◽  
Author(s):  
Victoria Mazoteras-Pardo ◽  
Ricardo Becerro-De-Bengoa-Vallejo ◽  
Marta Elena Losa-Iglesias ◽  
Daniel López-López ◽  
Patricia Palomo-López ◽  
...  

BACKGROUND High blood pressure is one of the most common reasons why patients seek assistance in daily clinical practice. Screening for hypertension is fundamental and, because hypertension is identified only when blood pressure is measured, accurate measurements are key to the diagnosis and management of this disease. The European Society of Hypertension International Protocol revision 2010 (ESH-IP2) was developed to assess the validity of automatic blood pressure measuring devices that are increasingly being used to replace mercury sphygmomanometers. OBJECTIVE We sought to determine whether the iHealth Track blood pressure monitor meets ESH-IP2 requirements for self-measurement of blood pressure and heart rate at the brachial level and is appropriate for use in the general population. METHODS This study was a descriptive investigation. ESH-IP2 requires a total number of 33 participants. For each measure, the difference between observer and device blood pressure and heart rate values is calculated. In all, 99 pairs of blood pressure differences are classified into 3 categories (≤5, ≤10, and ≤15 mm Hg), and 99 pairs of heart rate differences are classified into 3 categories (≤3, ≤5, and ≤8 beats/min). We followed these protocol procedures in a convenience sample of 33 participants. RESULTS iHealth Track fulfilled ESH-IP2 requirements and passed the validation process successfully. We observed an absolute difference within 5 mm Hg in 75 of 99 comparisons for systolic blood pressure, 78 of 99 comparisons for diastolic blood pressure, and 89 of 99 comparisons for heart rate. The mean differences between the test and standard readings were 4.19 (SD 4.48) mm Hg for systolic blood pressure, 3.74 (SD 4.55) mm Hg for diastolic blood pressure, and 1.95 (SD 3.27) beats/min for heart rate. With regard to part 2 of ESH-IP2, we observed a minimum of 2 of 3 measurements within a 5-mm Hg difference in 29 of 33 participants for systolic blood pressure and 26 of 33 for diastolic blood pressure, and a minimum of 2 of 3 measurements within a 3-beat/min difference in 30 of 33 participants for heart rate. CONCLUSIONS iHealth Track readings differed from the standard by less than 5, 10, and 15 mm Hg, fulfilling ESH-IP2 requirements. Consequently, this device is suitable for use in the general population.


10.2196/13137 ◽  
2019 ◽  
Vol 7 (3) ◽  
pp. e13137
Author(s):  
Victoria Mazoteras-Pardo ◽  
Ricardo Becerro-De-Bengoa-Vallejo ◽  
Marta Elena Losa-Iglesias ◽  
Daniel López-López ◽  
Patricia Palomo-López ◽  
...  

Background High blood pressure is one of the most common reasons why patients seek assistance in daily clinical practice. Screening for hypertension is fundamental and, because hypertension is identified only when blood pressure is measured, accurate measurements are key to the diagnosis and management of this disease. The European Society of Hypertension International Protocol revision 2010 (ESH-IP2) was developed to assess the validity of automatic blood pressure measuring devices that are increasingly being used to replace mercury sphygmomanometers. Objective We sought to determine whether the iHealth Track blood pressure monitor meets ESH-IP2 requirements for self-measurement of blood pressure and heart rate at the brachial level and is appropriate for use in the general population. Methods This study was a descriptive investigation. ESH-IP2 requires a total number of 33 participants. For each measure, the difference between observer and device blood pressure and heart rate values is calculated. In all, 99 pairs of blood pressure differences are classified into 3 categories (≤5, ≤10, and ≤15 mm Hg), and 99 pairs of heart rate differences are classified into 3 categories (≤3, ≤5, and ≤8 beats/min). We followed these protocol procedures in a convenience sample of 33 participants. Results iHealth Track fulfilled ESH-IP2 requirements and passed the validation process successfully. We observed an absolute difference within 5 mm Hg in 75 of 99 comparisons for systolic blood pressure, 78 of 99 comparisons for diastolic blood pressure, and 89 of 99 comparisons for heart rate. The mean differences between the test and standard readings were 4.19 (SD 4.48) mm Hg for systolic blood pressure, 3.74 (SD 4.55) mm Hg for diastolic blood pressure, and 1.95 (SD 3.27) beats/min for heart rate. With regard to part 2 of ESH-IP2, we observed a minimum of 2 of 3 measurements within a 5-mm Hg difference in 29 of 33 participants for systolic blood pressure and 26 of 33 for diastolic blood pressure, and a minimum of 2 of 3 measurements within a 3-beat/min difference in 30 of 33 participants for heart rate. Conclusions iHealth Track readings differed from the standard by less than 5, 10, and 15 mm Hg, fulfilling ESH-IP2 requirements. Consequently, this device is suitable for use in the general population.


2020 ◽  
Author(s):  
Jiangang Sun ◽  
Yang Liu

BACKGROUND An increasing number of wrist-worn wearables are being examined in the context of health care. However, studies of their use during physical education (PE) lessons remain scarce. OBJECTIVE We aim to examine the reliability and validity of the Fizzo Smart Bracelet (Fizzo) in measuring heart rate (HR) in the laboratory and during PE lessons. METHODS In Study 1, 11 healthy subjects (median age 22.0 years, IQR 3.75 years) twice completed a test that involved running on a treadmill at 6 km/h for 12 minutes and 12 km/h for 5 minutes. During the test, participants wore two Fizzo devices, one each on their left and right wrists, to measure their HR. At the same time, the Polar Team2 Pro (Polar), which is worn on the chest, was used as the standard. In Study 2, we went to 10 schools and measured the HR of 24 students (median age 14.0 years, IQR 2.0 years) during PE lessons. During the PE lessons, each student wore a Polar device on their chest and a Fizzo on their right wrist to measure HR data. At the end of the PE lessons, the students and their teachers completed a questionnaire where they assessed the feasibility of Fizzo. The measurements taken by the left wrist Fizzo and the right wrist Fizzo were compared to estimate reliability, while the Fizzo measurements were compared to the Polar measurements to estimate validity. To measure reliability, intraclass correlation coefficients (ICC), mean difference (MD), standard error of measurement (SEM), and mean absolute percentage errors (MAPE) were used. To measure validity, ICC, limits of agreement (LOA), and MAPE were calculated and Bland-Altman plots were constructed. Percentage values were used to estimate the feasibility of Fizzo. RESULTS The Fizzo showed excellent reliability and validity in the laboratory and moderate validity in a PE lesson setting. In Study 1, reliability was excellent (ICC>0.97; MD<0.7; SEM<0.56; MAPE<1.45%). The validity as determined by comparing the left wrist Fizzo and right wrist Fizzo was excellent (ICC>0.98; MAPE<1.85%). Bland-Altman plots showed a strong correlation between left wrist Fizzo measurements (bias=0.48, LOA=–3.94 to 4.89 beats per minute) and right wrist Fizzo measurements (bias=0.56, LOA=–4.60 to 5.72 beats per minute). In Study 2, the validity of the Fizzo was lower compared to that found in Study 1 but still moderate (ICC>0.70; MAPE<9.0%). The Fizzo showed broader LOA in the Bland-Altman plots during the PE lessons (bias=–2.60, LOA=–38.89 to 33.69 beats per minute). Most participants considered the Fizzo very comfortable and easy to put on. All teachers thought the Fizzo was helpful. CONCLUSIONS When participants ran on a treadmill in the laboratory, both left and right wrist Fizzo measurements were accurate. The validity of the Fizzo was lower in PE lessons but still reached a moderate level. The Fizzo is feasible for use during PE lessons.


Author(s):  
Nur Zakiah Mohd Saat ◽  
Najwa Suhaili Md Zin ◽  
Sazlina Kamaralzaman

Background: Previous studies found that the use of an iPad® in intervention programmes benefited the skills of daily living of children with autism. The purpose of the study was to determine the physiological changes in children while playing action and strategy games on an iPad. Methodology: A cross-sectional study was conducted using Powerlab 24/6T, a blood pressure monitor, respiratory belt, and finger pulse transducer. The children were asked to play two types of game. The duration for each game was 10 minutes. The measurement of blood pressure - both systolic and diastolic, heart rate and breathing rate were taken at three consecutive times (before, during and after each game). The inclusion criteria are children aged 7 to 12 years old who have been diagnosed with a mild type of autism (Pervasive developmental disorder). The exclusion criteria were children who had co-morbidities such as epilepsy, migraine, heart, and lung problems, depression, physical disabilities and visual impairments.  Results: Nineteen children with autism participated in this study. The result indicated that the mean systolic and diastolic blood pressures increased before and after playing strategy games and action games. However, compared to pre-play values, the mean heart rate and breathing rate decreased both during and after playing both types of game. Meanwhile, there was significant mean difference for breathing rate for both types of game (p<0.05). Conclusion: Playing strategy and action games did not affect the measured physiological parameters of children with autism. 


2003 ◽  
Vol 8 (2) ◽  
pp. 91-95 ◽  
Author(s):  
Daniele Longo ◽  
Gianluca Toffanin ◽  
Raffaella Garbelotto ◽  
Vania Zaetta ◽  
Lucio Businaro ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document