scholarly journals Issues in Building a Nursing Home Syndromic Surveillance System with Textmining: Longitudinal Observational Study (Preprint)

2017 ◽  
Author(s):  
Tiba Delespierre ◽  
Loic Josseran

BACKGROUND New nursing homes (NH) data warehouses fed from residents’ medical records allow monitoring the health of elderly population on a daily basis. Elsewhere, syndromic surveillance has already shown that professional data can be used for public health (PH) surveillance but not during a long-term follow-up of the same cohort. OBJECTIVE This study aimed to build and assess a national ecological NH PH surveillance system (SS). METHODS Using a national network of 126 NH, we built a residents’ cohort, extracted medical and personal data from their electronic health records, and transmitted them through the internet to a national server almost in real time. After recording sociodemographic, autonomic and syndromic information, a set of 26 syndromes was defined using pattern matching with the standard query language-LIKE operator and a Delphi-like technique, between November 2010 and June 2016. We used early aberration reporting system (EARS) and Bayes surveillance algorithms of the R surveillance package (Höhle) to assess our influenza and acute gastroenteritis (AGE) syndromic data against the Sentinelles network data, French epidemics gold standard, following Centers for Disease Control and Prevention surveillance system assessment guidelines. RESULTS By extracting all sociodemographic residents’ data, a cohort of 41,061 senior citizens was built. EARS_C3 algorithm on NH influenza and AGE syndromic data gave sensitivities of 0.482 and 0.539 and specificities of 0.844 and 0.952, respectively, over a 6-year period, forecasting the last influenza outbreak by catching early flu signals. In addition, assessment of influenza and AGE syndromic data quality showed precisions of 0.98 and 0.96 during last season epidemic weeks’ peaks (weeks 03-2017 and 01-2017) and precisions of 0.95 and 0.92 during last summer epidemic weeks’ low (week 33-2016). CONCLUSIONS This study confirmed that using syndromic information gives a good opportunity to develop a genuine French national PH SS dedicated to senior citizens. Access to senior citizens’ free-text validated health data on influenza and AGE responds to a PH issue for the surveillance of this fragile population. This database will also make possible new ecological research on other subjects that will improve prevention, care, and rapid response when facing health threats.

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Etran Bouchouar ◽  
Benjamin M. Hetman ◽  
Brendan Hanley

Abstract Background Automated Emergency Department syndromic surveillance systems (ED-SyS) are useful tools in routine surveillance activities and during mass gathering events to rapidly detect public health threats. To improve the existing surveillance infrastructure in a lower-resourced rural/remote setting and enhance monitoring during an upcoming mass gathering event, an automated low-cost and low-resources ED-SyS was developed and validated in Yukon, Canada. Methods Syndromes of interest were identified in consultation with the local public health authorities. For each syndrome, case definitions were developed using published resources and expert elicitation. Natural language processing algorithms were then written using Stata LP 15.1 (Texas, USA) to detect syndromic cases from three different fields (e.g., triage notes; chief complaint; discharge diagnosis), comprising of free-text and standardized codes. Validation was conducted using data from 19,082 visits between October 1, 2018 to April 30, 2019. The National Ambulatory Care Reporting System (NACRS) records were used as a reference for the inclusion of International Classification of Disease, 10th edition (ICD-10) diagnosis codes. The automatic identification of cases was then manually validated by two raters and results were used to calculate positive predicted values for each syndrome and identify improvements to the detection algorithms. Results A daily secure file transfer of Yukon’s Meditech ED-Tracker system data and an aberration detection plan was set up. A total of six syndromes were originally identified for the syndromic surveillance system (e.g., Gastrointestinal, Influenza-like-Illness, Mumps, Neurological Infections, Rash, Respiratory), with an additional syndrome added to assist in detecting potential cases of COVID-19. The positive predictive value for the automated detection of each syndrome ranged from 48.8–89.5% to 62.5–94.1% after implementing improvements identified during validation. As expected, no records were flagged for COVID-19 from our validation dataset. Conclusions The development and validation of automated ED-SyS in lower-resourced settings can be achieved without sophisticated platforms, intensive resources, time or costs. Validation is an important step for measuring the accuracy of syndromic surveillance, and ensuring it performs adequately in a local context. The use of three different fields and integration of both free-text and structured fields improved case detection.


2006 ◽  
Vol 11 (12) ◽  
pp. 9-10 ◽  
Author(s):  
G E Smith ◽  
D L Cooper ◽  
P Loveridge ◽  
F Chinemana ◽  
E Gerard ◽  
...  

Routine primary care data provide the means to monitor a variety of syndromes which could give early warning of health protection issues. In the United Kingdom, a national syndromic surveillance system, operated jointly by the UK Health Protection Agency (HPA) and NHS Direct (a national telephone health helpline), examines symptoms reported to NHS Direct. The aim of the system is to identify an increase in syndromes indicative of common infections and diseases, or the early stages of illness caused by the deliberate release of a biological or chemical agent. Data relating to 11 key symptoms/syndromes are received electronically from all 22 NHS Direct call centres covering England and Wales and analysed by the HPA on a daily basis. Statistically significant excesses in calls are automatically highlighted and assessed by a multi-disciplinary team. Although the surveillance system has characterised many sudden rises in syndromes reported to NHS Direct, no evidence of a biological or chemical attack has been detected. Benefits of this work, however, are early warning and tracking of rises in community morbidity (e.g. influenza-like illness, heatstroke); providing reassurance during times of perceived high risk (e.g. after the 7 July 2005 London bombs and December 2005 Buncefield oil depot fire); and timely surveillance data for influenza pandemic planning and epidemic modeling.


2019 ◽  
Vol 11 (1) ◽  
Author(s):  
Marija Borjan ◽  
Margaret Lumia

ObjectivesTo evaluate the use of a real-time surveillance tool to track a variety of occupationally-related emergency room visits through the state based syndromic surveillance system, EpiCenter.IntroductionThis study uses data from the New Jersey syndromic surveillance system (EpiCenter) as a data source to enhance surveillance of current non-fatal occupational injuries, illnesses, and poisonings. EpiCenter was originally developed for early detection and monitoring of the health of communities using chief complaints from people seeking acute care in hospital emergency rooms to identify health trends. Currently, syndromic surveillance has not been widely applied to identify occupational injuries and illnesses. Incorporating syndromic surveillance data from EpiCenter, along with hospital discharge data, will enhance the classification and capture of work-related non-fatal injuries with possible improved efforts at prevention.MethodsEpiCenter Emergency Department data from January to December 2014 was evaluated, using work-related keywords and ICD-9 codes, to determine its ability to capture non-fatal work-related injuries. A collection of keywords and phrases specific to work-related injuries was developed by manually assessing the free text chief complaint data field’s. Sensitivity, specificity, and positive predictive value (PPV), along with descriptive statistics was used to evaluate and summarize the occupational injuries identified in EpiCenter.ResultsOverall, 11,919 (0.3%) possible work-related injuries were identified via EpiCenter. Of these visits 956 (8%) indicated Workman’s Compensation as payer. Events that resulted in the greatest number of ED visits were falls, slips, trips (1,679, 14%). Nature of injury included cuts, lacerations (1,041, 9%), burns (255, 2%), and sprains, strains, tears (185, 2). The part of the body most affected were the back (1,414, 12%). This work-related classifier achieved a sensitivity of 5.4%, a specificity of 99.8%, and a PPV of 2.8%.ConclusionsEvaluating the ability and performance of a new and existing surveillance data source to capture work-related injuries can lead to enhancements in current data collection methods. This evaluation successfully demonstrated that the chief complaint reporting system can yield real-time knowledge of incidents and local conditions for use in identifying opportunities for prevention of work-related injuries. 


Author(s):  
Urania G. Dafni ◽  
S. Tsiodras ◽  
D. Panagiotakos ◽  
K. Gkolfinopoulou ◽  
G. Kouvatscas ◽  
...  

2018 ◽  
Vol 10 (1) ◽  
Author(s):  
Pascal Vilain ◽  
Salamta Bah-Assoumani ◽  
Ali-Mohamed Youssouf ◽  
Laurent Filleul

ObjectiveTo confirm and to characterize the increase in emergency department (ED) visits related to the use of synthetic cannabinoids (SC)IntroductionOn October 2016, the Indian Ocean Regional Health Agency was alerted about an increase in ED visits related to adverse reactions associated with use of SC on Mayotte Island. In this context, an investigation based on a syndromic surveillance system was implemented by the regional unit of the French national public health agency.MethodsAn extraction of anonymized records routinely collected by the syndromic surveillance system (1) was carried out from January 1st, 2012 to October 30, 2016. ED visits related to the consumption of SC were identified from ICD-10 codes of the principal diagnostic according to two levels of confidence:- a probable case was defined as ED visit coded X69 (Intentional self-poisoning by and exposure to other and unspecified chemicals and noxious substances). This code has been implemented specifically by ED physicians since august 2015;- a suspect case was defined as ED visit coded: F11 (Mental and behavioral disorders due to use of opioids), F12 (Mental and behavioral disorders due to use of cannabinoids), F16 (Mental and behavioral disorders due to use of hallucinogens), F18 (Mental and behavioral disorders due to use of volatile solvents), F19 (Mental and behavioral disorders due to multiple drug use and use of other psychoactive substances).Based on these data, an epidemic curve and a descriptive analysis of ED visits were carried out.ResultsIn total, 146 ED visits related to adverse events associated with use of SC were registered from January 1st, 2012 to October 30, 2016. The epidemic curve shows two waves between 2015 and 2016 with a particularly high peak in August 2015 (Figure 1). In total, 49% (n=72/146) of these ED visits were probably related to adverse reactions associated to use SC and 51% (n=74/146) meet to the suspect case definition. On the surveillance period, men represented 84% of the patients (n=122) and median age (min – max) was 23 (8-62) years old. When the severity score variable was filled (n = 138), a vital emergency was reported for 4% (n = 5) of patients and 19% of patients were hospitalized.ConclusionsData from syndromic surveillance system allowed to confirm an increase in ED visits related to adverse reactions associated with use of SC in Mayotte Island. To our knowledge, it’s the first time that an outbreak related to use SC is described in the Ocean Indian areaThis phenomenon was particularly marked in 2015 with a peak of ED visits on August 2016.After this outbreak, the regional unit of the French national public health agency recommended the pursuit of the coding X69 in principal diagnosis with the following case definition: any patient with an adverse reaction attributed to synthetic cannabinoid use whether suspected by the medical team or declared by the patient himself or if the patient is in possession of the substance; and to raise awareness ED physicians to the notification of these poisonings to the Regional Addictive Surveillance Center.In conclusion, the young population, weakened by a precarious socio-economic situation, is a target for new synthetic drugs and a threat to public health. This emerging risk in Mayotte must be taken into account and must be actively monitored. In this context, collaborative work with the emergency services must continue in parallel with targeted prevention measures.References1. Vilain P, Maillard O, Raslan-Loubatie J, Abdou MA, Lernout T, Filleul L. Usefulness of Syndromic Surveillance for Early Outbreak Detection in Small Islands: The Case of Mayotte. Online Journal of Public Health Informatics. 2013;5(1):e149.


2020 ◽  
Vol 26 (9) ◽  
pp. 2196-2200
Author(s):  
Emily Alsentzer ◽  
Sarah-Blythe Ballard ◽  
Joan Neyra ◽  
Delphis M. Vera ◽  
Victor B. Osorio ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document