scholarly journals Using Syndromic Surveillance to Classify and Capture Non-Fatal Occupational Injuries and Illnesses

2019 ◽  
Vol 11 (1) ◽  
Author(s):  
Marija Borjan ◽  
Margaret Lumia

ObjectivesTo evaluate the use of a real-time surveillance tool to track a variety of occupationally-related emergency room visits through the state based syndromic surveillance system, EpiCenter.IntroductionThis study uses data from the New Jersey syndromic surveillance system (EpiCenter) as a data source to enhance surveillance of current non-fatal occupational injuries, illnesses, and poisonings. EpiCenter was originally developed for early detection and monitoring of the health of communities using chief complaints from people seeking acute care in hospital emergency rooms to identify health trends. Currently, syndromic surveillance has not been widely applied to identify occupational injuries and illnesses. Incorporating syndromic surveillance data from EpiCenter, along with hospital discharge data, will enhance the classification and capture of work-related non-fatal injuries with possible improved efforts at prevention.MethodsEpiCenter Emergency Department data from January to December 2014 was evaluated, using work-related keywords and ICD-9 codes, to determine its ability to capture non-fatal work-related injuries. A collection of keywords and phrases specific to work-related injuries was developed by manually assessing the free text chief complaint data field’s. Sensitivity, specificity, and positive predictive value (PPV), along with descriptive statistics was used to evaluate and summarize the occupational injuries identified in EpiCenter.ResultsOverall, 11,919 (0.3%) possible work-related injuries were identified via EpiCenter. Of these visits 956 (8%) indicated Workman’s Compensation as payer. Events that resulted in the greatest number of ED visits were falls, slips, trips (1,679, 14%). Nature of injury included cuts, lacerations (1,041, 9%), burns (255, 2%), and sprains, strains, tears (185, 2). The part of the body most affected were the back (1,414, 12%). This work-related classifier achieved a sensitivity of 5.4%, a specificity of 99.8%, and a PPV of 2.8%.ConclusionsEvaluating the ability and performance of a new and existing surveillance data source to capture work-related injuries can lead to enhancements in current data collection methods. This evaluation successfully demonstrated that the chief complaint reporting system can yield real-time knowledge of incidents and local conditions for use in identifying opportunities for prevention of work-related injuries. 

2018 ◽  
Vol 10 (1) ◽  
Author(s):  
Sameh W Boktor ◽  
Kristen Waller ◽  
Lenee Blanton ◽  
Krista Kniss

Objective: Discuss use of syndromic surveillance as a source for the state’s ILI/Influenza surveillanceDiscuss reliability of syndromic data and methods to address problems caused by data outliers and inconsistencies.Introduction: ILINet is a CDC program that has been used for years for influenza-like illness (ILI) surveillance, using a network of outpatient providers who volunteer to track and report weekly the number of visits due to ILI and the total number of visits to their practice. Pennsylvania has a network of 95 providers and urgent care clinics that submit data to ILINet. However, ongoing challenges in recruiting and retaining providers, and inconsistent weekly reporting are barriers to receiving accurate, representative, and timely ILI surveillance data year-round. Syndromic surveillance data have been used to enhance outpatient ILI surveillance in a number of jurisdictions, including Pennsylvania. At present, 156 hospitals, or 90% of all Pennsylvania hospitals with emergency departments (EDs), send chief complaint and other information on their ED visits to the Department of Health’s (PADOH) syndromic surveillance system. PADOH evaluated the consistency and reliability of ILI syndromic data as compared to ILINet data, to confirm that syndromic data were suitable for use in ILINet.Methods: Pennsylvania ILINet data from the past 6 influenza seasons (2011-2012 to 2016-2017, or 314 weeks of data) were downloaded from the CDC’s ILINet website. The statewide weekly percent of visits due to ILI in ILINet was used as the standard for comparisons. For syndromic surveillance, PADOH uses the Epicenter platform hosted by Health Monitoring Systems (HMS); visit-level data are also stored in SAS datasets at PADOH, and HMS forwards a subset of data to the National Syndromic Surveillance System Program. Using syndromic data from the same time period, the proportion of weeks with no syndromic data available was calculated for each facility. A state-developed ILI algorithm (very similar to the 2016 algorithm developed by the ISDS Syndrome Definitions Workgroup) was applied to ED visit chief complaint data to identify visits likely to be due to ILI. The algorithm flags the ER visit as ILI if chief complaint has any combinations of words for flu or fever plus either cough and sore throat or fever and both cough or sore throat . The percent of ED visits due to ILI per the syndromic algorithm (ILIsyn) was calculated for each week by hospital and state-wide. Facility ILIsyn trends were compared to the State level percent ILI data from ILINet by visually examining plots and by calculating Pearson correlation coefficients. Facilities that had >=15 weeks where ILIsyn differed from percent ILI in ILINet by more than 5% were considered to be poorly correlated.Results: A total of 156 hospitals were evaluated in the study. Twenty of the hospitals were excluded because they did not have syndromic data for at least 50% of the weeks in the study period, and an additional 20 were excluded because they had not agreed to have data forwarded to CDC. Of the remaining 116 facilities, individual facility correlation coefficients between ILIsyn and ILINet trends ranged from 0.03 to 0.82 (examples are in Figure 1). Twenty-four hospitals (20.7%) were determined to be poorly correlated. When data from the remaining 92 hospitals were combined, the state ILINet and state-wide ILIsyn trends were strongly correlated statistically and graphically (r=0.82, p <0.0001, Figure 2). Syndromic data from these 92 facilities were deemed acceptable for inclusion in ILINet. Conclusions: Syndromic surveillance data are a valuable source for ILI surveillance. However, evaluation at the hospital-specific level revealed that useful information is not obtained from all facilities. This project demonstrated that validation of data at the facility level is crucial to obtaining reliable and meaningful information. More work is needed to understand which factors distinguish well-correlated from poorly-correlated facilities, and how to improve the quality of information obtained from poorly-correlated facilities.


Author(s):  
Kristen Soto ◽  
Erin Grogan ◽  
Alexander Senetcky ◽  
Susan Logan

ObjectiveTo describe the use of syndromic surveillance data for real-time situational awareness of emergency department utilization during a localized mass overdose event related to the substance K2.IntroductionOn August 15, 2018, the Connecticut Department of Public Health (DPH) became aware of a cluster of suspected overdoses in an urban park related to the synthetic cannabinoid K2. Abuse of K2 has been associated with serious adverse effects and overdose clusters have been reported in multiple states. This investigation aimed to characterize the use of syndromic surveillance data to monitor a cluster of suspected overdoses in real time.MethodsThe EpiCenter syndromic surveillance system collects data on all emergency department (ED) visits at Connecticut hospitals. ED visits associated with the event were identified using ad hoc keyword analyses. The number of visits by facility location for the state, county, and city were communicated to state and local partners in real time. Gender, age, and repeated ED visits were assessed. After the event, surveillance findings were summarized for partnersResultsDuring the period of August 15–16, 2018 the number of ED visits with a mention of K2 in the chief complaint increased from three to 30 in the impacted county, compared to a peak of 5 visits during the period of March–July, 2018. An additional 25 ED visits were identified using other related keywords (e.g., weed). After the event, 72 ED visits were identified with K2 and location keywords in the chief complaint or triage notes. These 72 visits comprised 53 unique patients, with 12 patients returning to the ED 2–5 times over the two day period. Of 53 patients, 77% were male and the median age was 40 years (interquartile range 35–51 years). Surveillance findings were shared with partners in real time for situational awareness, and in a summary report on August 21.ConclusionsData from the EpiCenter system were consistent with reports from other data sources regarding this cluster of suspected drug overdoses. Next steps related to this event involve: monitoring data for reference to areas of concentrated substance use, enabling automated alerts to detect clusters of interest, and developing a plan to improve coordinate real-time communication with stakeholderswithin DPH and with external partners during events.


2017 ◽  
Vol 32 (6) ◽  
pp. 667-672 ◽  
Author(s):  
Dan Todkill ◽  
Paul Loveridge ◽  
Alex J. Elliot ◽  
Roger A. Morbey ◽  
Obaghe Edeghere ◽  
...  

AbstractIntroductionThe Public Health England (PHE; United Kingdom) Real-Time Syndromic Surveillance Team (ReSST) currently operates four national syndromic surveillance systems, including an emergency department system. A system based on ambulance data might provide an additional measure of the “severe” end of the clinical disease spectrum. This report describes the findings and lessons learned from the development and preliminary assessment of a pilot syndromic surveillance system using ambulance data from the West Midlands (WM) region in England.Hypothesis/ProblemIs an Ambulance Data Syndromic Surveillance System (ADSSS) feasible and of utility in enhancing the existing suite of PHE syndromic surveillance systems?MethodsAn ADSSS was designed, implemented, and a pilot conducted from September 1, 2015 through March 1, 2016. Surveillance cases were defined as calls to the West Midlands Ambulance Service (WMAS) regarding patients who were assigned any of 11 specified chief presenting complaints (CPCs) during the pilot period. The WMAS collected anonymized data on cases and transferred the dataset daily to ReSST, which contained anonymized information on patients’ demographics, partial postcode of patients’ location, and CPC. The 11 CPCs covered a broad range of syndromes. The dataset was analyzed descriptively each week to determine trends and key epidemiological characteristics of patients, and an automated statistical algorithm was employed daily to detect higher than expected number of calls. A preliminary assessment was undertaken to assess the feasibility, utility (including quality of key indicators), and timeliness of the system for syndromic surveillance purposes. Lessons learned and challenges were identified and recorded during the design and implementation of the system.ResultsThe pilot ADSSS collected 207,331 records of individual ambulance calls (daily mean=1,133; range=923-1,350). The ADSSS was found to be timely in detecting seasonal changes in patterns of respiratory infections and increases in case numbers during seasonal events.ConclusionsFurther validation is necessary; however, the findings from the assessment of the pilot ADSSS suggest that selected, but not all, ambulance indicators appear to have some utility for syndromic surveillance purposes in England. There are certain challenges that need to be addressed when designing and implementing similar systems.TodkillD, LoveridgeP, ElliotAJ, MorbeyRA, EdeghereO, Rayment-BishopT, Rayment-BishopC, ThornesJE, SmithG. Utility of ambulance data for real-time syndromic surveillance: a pilot in the West Midlands region, United Kingdom. Prehosp Disaster Med. 2017;32(6):667–672.


2015 ◽  
Vol 7 (1) ◽  
Author(s):  
Tao Tao ◽  
Qi Zhao ◽  
Jun Zong ◽  
Xue Li ◽  
Vinod Diwan ◽  
...  

This study estimated the early warning timeliness of a chief complaint-based syndromic surveillance system towards seasonal influenza epidemics. Findings showed that the timliness of ILI data sources changed across two influenza epidemic seasons. ILI reported from different levels of health facilities and patient groups showed distinct timeliness towards influenza epidemics indicated by virus positive rate (VPR) from National Influenza Surveillance Network. The changes of dominant strains, clinical manifestations, population groups affected in different influenza seasons might account for this inconsistency.


2015 ◽  
Vol 7 (1) ◽  
Author(s):  
Melinda C. Thomas ◽  
David Atrubin ◽  
Janet J. Hamilton

This session discusses an assessment of the effect of patient self-registration methods in hospital emergency departments on data in a syndromic surveillance system and provides suggestions for best practices in identifying and analyzing these data.


2017 ◽  
Author(s):  
Tiba Delespierre ◽  
Loic Josseran

BACKGROUND New nursing homes (NH) data warehouses fed from residents’ medical records allow monitoring the health of elderly population on a daily basis. Elsewhere, syndromic surveillance has already shown that professional data can be used for public health (PH) surveillance but not during a long-term follow-up of the same cohort. OBJECTIVE This study aimed to build and assess a national ecological NH PH surveillance system (SS). METHODS Using a national network of 126 NH, we built a residents’ cohort, extracted medical and personal data from their electronic health records, and transmitted them through the internet to a national server almost in real time. After recording sociodemographic, autonomic and syndromic information, a set of 26 syndromes was defined using pattern matching with the standard query language-LIKE operator and a Delphi-like technique, between November 2010 and June 2016. We used early aberration reporting system (EARS) and Bayes surveillance algorithms of the R surveillance package (Höhle) to assess our influenza and acute gastroenteritis (AGE) syndromic data against the Sentinelles network data, French epidemics gold standard, following Centers for Disease Control and Prevention surveillance system assessment guidelines. RESULTS By extracting all sociodemographic residents’ data, a cohort of 41,061 senior citizens was built. EARS_C3 algorithm on NH influenza and AGE syndromic data gave sensitivities of 0.482 and 0.539 and specificities of 0.844 and 0.952, respectively, over a 6-year period, forecasting the last influenza outbreak by catching early flu signals. In addition, assessment of influenza and AGE syndromic data quality showed precisions of 0.98 and 0.96 during last season epidemic weeks’ peaks (weeks 03-2017 and 01-2017) and precisions of 0.95 and 0.92 during last summer epidemic weeks’ low (week 33-2016). CONCLUSIONS This study confirmed that using syndromic information gives a good opportunity to develop a genuine French national PH SS dedicated to senior citizens. Access to senior citizens’ free-text validated health data on influenza and AGE responds to a PH issue for the surveillance of this fragile population. This database will also make possible new ecological research on other subjects that will improve prevention, care, and rapid response when facing health threats.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Etran Bouchouar ◽  
Benjamin M. Hetman ◽  
Brendan Hanley

Abstract Background Automated Emergency Department syndromic surveillance systems (ED-SyS) are useful tools in routine surveillance activities and during mass gathering events to rapidly detect public health threats. To improve the existing surveillance infrastructure in a lower-resourced rural/remote setting and enhance monitoring during an upcoming mass gathering event, an automated low-cost and low-resources ED-SyS was developed and validated in Yukon, Canada. Methods Syndromes of interest were identified in consultation with the local public health authorities. For each syndrome, case definitions were developed using published resources and expert elicitation. Natural language processing algorithms were then written using Stata LP 15.1 (Texas, USA) to detect syndromic cases from three different fields (e.g., triage notes; chief complaint; discharge diagnosis), comprising of free-text and standardized codes. Validation was conducted using data from 19,082 visits between October 1, 2018 to April 30, 2019. The National Ambulatory Care Reporting System (NACRS) records were used as a reference for the inclusion of International Classification of Disease, 10th edition (ICD-10) diagnosis codes. The automatic identification of cases was then manually validated by two raters and results were used to calculate positive predicted values for each syndrome and identify improvements to the detection algorithms. Results A daily secure file transfer of Yukon’s Meditech ED-Tracker system data and an aberration detection plan was set up. A total of six syndromes were originally identified for the syndromic surveillance system (e.g., Gastrointestinal, Influenza-like-Illness, Mumps, Neurological Infections, Rash, Respiratory), with an additional syndrome added to assist in detecting potential cases of COVID-19. The positive predictive value for the automated detection of each syndrome ranged from 48.8–89.5% to 62.5–94.1% after implementing improvements identified during validation. As expected, no records were flagged for COVID-19 from our validation dataset. Conclusions The development and validation of automated ED-SyS in lower-resourced settings can be achieved without sophisticated platforms, intensive resources, time or costs. Validation is an important step for measuring the accuracy of syndromic surveillance, and ensuring it performs adequately in a local context. The use of three different fields and integration of both free-text and structured fields improved case detection.


2014 ◽  
Vol 6 (1) ◽  
Author(s):  
Corinne Pioche ◽  
Christine Larsen ◽  
Céline Caserio-Schonemann ◽  
Vanina Héraud-Bousquet

Our objectives were to explore the relevance of emergency departments' (ED) data, collected daily through the French syndromic surveillance system (414 EDs, 65% attendances), to describe the characteristics of patients with acute liver failure (ALF). Data corresponding to ICD10 codes related to hepatitis diagnosis that include ALF ICD10 code (K720) were extracted and analyzed. During 2010-2012, 246 730 attendances with hepatitis were recorded of which 2 475 (1%) were linked to ALF. Patients with ALF were male (60%), their median age was 55 years. This study shows the relevance of French syndromic surveillance data to assess the burden of ALF.


Sign in / Sign up

Export Citation Format

Share Document