DSP Based Implementation of Hybrid Fuzzy PI Speed Controller for Direct Torque Controlled Permanent Magnet Synchronous Motor Drive

Author(s):  
Bhim Singh ◽  
B. P. Singh ◽  
Sanjeet Dwivedi

This paper presents a Digital Signal Processor (DSP) based implementation of Hybrid of Fuzzy Logic Controller (FLC) and Proportional-Integral (PI) speed controller for Direct Torque Controlled (DTC) Permanent Magnet Synchronous Motor (PMSM) drive. The fuzzy membership function is used for hybrid control of these two FLC and PI speed controllers in such a way that at the time of dynamic conditions such as starting, the degree of belonging for FLC speed controller is higher than the PI speed controller and near set point the degree of belonging of PI controller is having higher weightage. The simulation model of the drive system is developed in MATLAB environment with simulink, PSB and FLC toolboxes to analyze the performance of the PMSM drive system. This hybrid speed controller is found suitable for DTC based PMSM drive to maintain the high level of performance while maintaining the excellent response at the time of starting, speed reversal, load perturbation and steady-state operating condition of the drive.

2012 ◽  
Vol 150 ◽  
pp. 100-104
Author(s):  
Tao Zhang ◽  
Wei Ni ◽  
Hui Ping Zhang ◽  
Sha Sha Wu

When the permanent magnet synchronous motor is operated at a low speed. The rotor position and speed are very difficult to estimate using the extended flux or back EMF method. A novel modified current slope estimating method is used to estimate the rotor position and speed in low speed in this paper. The mathematical models of an interior permanent magnet synchronous motor (IPMSM) are deduced. The basic principle of modified current slope method is introduced. The simulation control system is built based on Matlab and a TMS320LF2407 digital signal processor is used to execute the rotor position and speed estimation. The experimental and simulation results have shown that the rotor position and speed can be accurately estimated in a low-speed operating region.


2012 ◽  
Vol 468-471 ◽  
pp. 2891-2894 ◽  
Author(s):  
Hui Wang ◽  
Xue Ren Dong ◽  
Xiao Wei Yang ◽  
Feng Nan Liu

For requirements Permanent magnet synchronous motor (PMSM) speeds control, the digital signal processor (DSP) is used for speed control system of PMSM. By using space vector pulse width modulation (SVPWM) algorithm, system performance is improved, and system costs are reduced. In this paper, the principle of SVPWM is analyzed, and its implementation is described. Through the analysis of permanent magnet synchronous motor in a different coordinate system in the mathematical model system solution is presented, software design for system is described. A DSP-based PMSM speed control system is build, the system is analyzed in MATLAB simulation. That proves the feasibility of the system.


2019 ◽  
Vol 33 (06) ◽  
pp. 1950031 ◽  
Author(s):  
Dong Peng ◽  
Ke Hui Sun ◽  
Abdulaziz. O. A. Alamodi

In this paper, dynamics of the fractional-order permanent magnet synchronous motor (FOPMSM) model is investigated. The numerical solution of the FOPMSM system is derived based on Adomian decomposition method (ADM) that is a computationally efficient and high accurate method, and its dynamical behaviors are observed by means of phase diagrams, bifurcation diagrams, Lyapunov exponent spectra (LEs), Poincaré section and chaos diagram based on spectral entropy (SE) complexity. Comparison with some reported studies, the simulation results show that it has more rich dynamical characteristics. The lowest order for the existence of chaos is 2.115 that demonstrated by 0–1 test, which is lower than that existing result (2.85). Finally, the FOPMSM system is implemented by digital signal processor (DSP), which verifies the correctness of the solution algorithm and the physical feasibility of this system. It indicates that the FOPMSM system has broad application prospect.


Author(s):  
M. N. Uddin ◽  
◽  
M. A. Rahman

This paper presents the on-line implementation of a novel fuzzy logic based speed controller for an interior permanent magnet synchronous motor drive. The fundamentals of fuzzy logic algorithms relating to motor control applications are illustrated. A new fuzzy speed controller for the IPMSM drive is designed. The complete vector control scheme incorporating the fuzzy logic controller (FLC) is successfully implemented in real-time using a digital signal processor board DS 1102 in a laboratory 1 hp interior permanent magnet synchronous motor (IPMSM). The efficacy of the proposed fuzzy logic controller (FLC) based IPMSM drive is verified by simulation as well as experimental results at different dynamic operating conditions. The fuzzy logic controller is found to be more robust for application in the IPMSM drive.


Sign in / Sign up

Export Citation Format

Share Document