Life Cycle Inventory Data Development for Greenhouse Gas Emissions of Thailand's Electricity Grid Generation Systems

Author(s):  
Viganda Varabuntoonvit ◽  
Yucho Sadamichi ◽  
Seizo Kato ◽  
Thumrongrut Mungcharoen

LCA (Life Cycle Assessment) is a well known methodology to assess the impact on the environment over the life cycle of a product, process, or activity. This methodology is based on the LCI (Life Cycle Inventory) database, a data set of all resources (material and energy) that are consumed or emitted in order to produce 1 unit of the product. Because electricity is a basic infrastructure, a Thailand electricity grid LCI database is needed to assess the environmental impact not only for the product used in Thailand, but also for any product that is exported to other countries. A complete LCI database for the electricity grid in Thailand is not yet available, and the LCI database developed in this work applies from the fuel acquisition stage to the production stage. The analysis shows the unique characteristics of the Thailand electricity grid. An LCI database for each type of fuel and for each electricity generation system was developed. The characteristics of each type of fuel and electricity generation system are indicated in terms of Life Cycle GHG (Greenhouse Gas) emissions to reflect their global warming potential. Data on the Life Cycle GHG emission per kWh of electricity produced are also provided. The first Thailand LCI database for the fuels used in the electricity generation system was developed using data obtained from the EGAT (Electricity Generating Authority of Thailand), IPPs (Independent Power Producers), and PTT (Petroleum Authority of Thailand) during the Thai fiscal year 2005 (from October 2004 to September 2005). The database was used to analyze the current situation and the characteristics of the electricity generation system in Thailand and to compare it with the systems used in other developed countries.

2012 ◽  
Vol 16 ◽  
pp. S122-S135 ◽  
Author(s):  
David D. Hsu ◽  
Patrick O’Donoughue ◽  
Vasilis Fthenakis ◽  
Garvin A. Heath ◽  
Hyung Chul Kim ◽  
...  

2012 ◽  
Vol 16 ◽  
pp. S110-S121 ◽  
Author(s):  
Hyung Chul Kim ◽  
Vasilis Fthenakis ◽  
Jun-Ki Choi ◽  
Damon E. Turney

Energies ◽  
2019 ◽  
Vol 12 (23) ◽  
pp. 4443 ◽  
Author(s):  
Ingrid Munné-Collado ◽  
Fabio Maria Aprà ◽  
Pol Olivella-Rosell ◽  
Roberto Villafáfila-Robles

On the path towards the decarbonization of the electricity supply, flexibility and demand response have become key factors to enhance the integration of distributed energy resources, shifting the consumption from peak hours to off-peak hours, optimizing the grid usage and maximizing the share of renewables. Despite the technical viability of flexible services, the reduction of greenhouse gas emissions has not been proven. Traditionally, emissions are calculated on a yearly average timescale, not providing any information about peak hours’ environmental impact. Furthermore, peak-hours’ environmental impacts are not always greater than on the base load, depending on the resources used for those time periods. This paper formulates a general methodology to assess the potential environmental impact of peak-hourly generation profiles, through attributional life cycle assessment. This methodology was applied to five different countries under the INVADE H2020 Project. Evaluation results demonstrate that countries like Spain and Bulgaria could benefit from implementing demand response activities considering environmental aspects, enhancing potential greenhouse gas reductions by up to 21% in peak hours.


Sign in / Sign up

Export Citation Format

Share Document