A Probability Method for Very Short-Term Steady State Analysis of a Distribution System with Wind Farms

Author(s):  
Antonio Bracale ◽  
Pierluigi Caramia ◽  
Guido Carpinelli ◽  
Pietro Varilone

In this paper, a probabilistic method is proposed to analyze the very short-term steady-state performance of an unbalanced distribution electrical system characterized by the presence of wind farms. This method, which can take into account the uncertainties of loads and wind productions, is based on a Monte Carlo simulation procedure applied to the non-linear three-phase load flow equations, including wind farm models. Bayesian time series models are used to predict the next hour's wind speed probability density functions, making possible a predictive evaluation of the very short-term system steady-state behavior. Numerical applications are presented and discussed with reference to the three-phase unbalanced IEEE 34-bus test distribution system in the presence of wind farms connected at different busbars.

Energies ◽  
2010 ◽  
Vol 3 (4) ◽  
pp. 650-670 ◽  
Author(s):  
Antonio Bracale ◽  
Guido Carpinelli ◽  
Daniela Proto ◽  
Angela Russo ◽  
Pietro Varilone

2021 ◽  
Vol 6 ◽  
pp. 20-25
Author(s):  
Alexey Bogatyrev

Wind turbines and wind farms can be connected to the major electricity distribution system. This paper presents the research results on synchronization of wind farm power supply into the utility grid depending on parameters of the grid at the moment. Measurement time gets synchronized with the external time signal delivered from a navigating system like GLONASS. This can help eliminate antiphase operation of individual wind turbines. Connection diagrams and the whole methodology presented in this paper aim to make wind farm power supply into the grid more effective and loss-eliminating.


Energies ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 545 ◽  
Author(s):  
Chia-Sheng Tu ◽  
Ming-Tang Tsai

This paper presents an efficient strategy for transformer planning to reduce the system losses by means of transformer rearrangement. The customer connected to the distribution transformer are first investigated by the field survey, and the loads of the various customers are collected from the customer information system (CIS) and distribution database system (DAS) to derive their load patterns. The objective function is to minimize the total line loss in the 24 intervals. An improved bacterial foraging algorithm (IBFO) is proposed herein to find the optimal phase combination of distribution transformers to minimize the total line loss by considering operating constraints. A three-phase load flow program with Eeuivalent current injection (ECT) is used to solve the total line loss and system unbalance factor on a Taipower distribution system. The results can help operators not only perform the proper installation phase selection of distribution transformers, but also reduce the system losses, decrease the system unbalance factor, and improve the voltage profiles of the buses.


2011 ◽  
Vol 2011 ◽  
pp. 1-24
Author(s):  
M. Baghdadi ◽  
S. S. Mortazavi ◽  
A. Saidian

This paper presents a comprehensive framework model of a distribution company with security and reliability considerations. A probabilistic wind farm, which is a renewable energy resource, is modeled in this work. The requirement energy of distribution company can be either provided by distribution company's own distributed generations or purchased from power market. Two reliability indices as well as DC load flow equations are also considered in order to satisfy reliability and security constraints, respectively. Since allocating proper spinning reserve improves reliability level, the amount of spinning reserve will be calculated iteratively. In this work, all equations are expressed in a linear fashion in which unit commitment formulation depends on binary variables associated with only on/off of units. The benders decomposition method is used to solve security-based unit commitment.


Author(s):  
Rudy Gianto ◽  
Purwoharjono Purwoharjono

This paper proposes a new and simple method to incorporate three-phase power transformer model into distribution system load flow (DSLF) analysis. The objective of the present work is to find a robust and efficient technique for modeling and integrating power transformer in the DSLF analysis. The proposed transformer model is derived based on nodal admittance matrix and formulated by using the symmetrical component theory. Load flow formulation in terms of branch currents and nodal voltages is also proposed in this paper to enable integrating the model into the DSLF analysis. Singularity that makes the calculations in forward/backward sweep (FBS) algorithm is difficult to be carried out. It can be avoided in the method. The proposed model is verified by using the standard IEEE test system.


Author(s):  
Rafael Valotta Rodrigues ◽  
Corinne Lengsfeld

The use of wind energy has been developing fast over the last years. The global cumulative wind power capacity increased by 10.5% in 2019, most of which comes from onshore wind farms. One of the consequences of this continuous increase is the use of land for onshore wind farms. There are already cases worldwide where lack of well-established plans and strategies have caused delays in projects. The need for efficiently using land for wind farms will be mandatory in the short term. In this work, we present a numerical analysis to evaluate wind farm land-use. By defining the ratio between mechanical output power over an area as a parameter called land-use ratio, this work focused on comparing several cases of aligned and staggered layouts. Mechanical output power was estimated using a validated code based on Blade Element Momentum code, and the wake velocities and wake interaction effects were estimated using a validated wind turbine CFD model. In terms of output power, staggered designs are more efficient than aligned designs. However, the results showed that even though staggered designs produced higher output power, aligned farms with tight lateral spacing could be as efficient as staggered ones in terms of land-use but using fewer turbines. In summary, tightly aligned designs should be a tendency in the future towards efficient use of land in wind farms.


Sign in / Sign up

Export Citation Format

Share Document