scholarly journals Mitigating Economic Denial of Sustainability (EDoS) in Cloud Environment using Genetic Algorithm and Artificial Neural Network

Economic Denial of Sustainability (EDoS) is a latest threat in the cloud environment in which EDoS attackers continually request huge number of resources that includes virtual machines, virtual security devices, virtual networking devices, databases and so on to slowly exploit illegal traffic to trigger cloud-based scaling capabilities. As a result, the targeted cloud ends with a consumer bill that could lead to bankruptcy. This paper proposes an intelligent reactive approach that utilizes Genetic Algorithm and Artificial Neural Network (GANN) for classification of cloud server consumer to minimize the effect of EDoS attacks and will be beneficial to small and medium size organizations. EDoS attack encounters the illegal traffic so the work is progressed into two phases: Artificial Neural Network (ANN) is used to determine affected path and to detect suspected service provider out of the detected affected route which further consist of training and testing phase. The properties of every server are optimized by using an appropriate fitness function of Genetic Algorithm (GA) based on energy consumption of server. ANN considered these properties to train the system to distinguish between the genuine overwhelmed server and EDoS attack affected server. The experimental results show that the proposed Genetic and Artificial Neural Network (GANN) algorithm performs better compared to existing Fuzzy Entropy and Lion Neural Learner (FLNL) technique with values of precision, recall and f-measure are increased by 3.37%, 10.26% and 6.93% respectively.

Author(s):  
Sandip K Lahiri ◽  
Kartik Chandra Ghanta

Four distinct regimes were found existent (namely sliding bed, saltation, heterogeneous suspension and homogeneous suspension) in slurry flow in pipeline depending upon the average velocity of flow. In the literature, few numbers of correlations has been proposed for identification of these regimes in slurry pipelines. Regime identification is important for slurry pipeline design as they are the prerequisite to apply different pressure drop correlation in different regime. However, available correlations fail to predict the regime over a wide range of conditions. Based on a databank of around 800 measurements collected from the open literature, a method has been proposed to identify the regime using artificial neural network (ANN) modeling. The method incorporates hybrid artificial neural network and genetic algorithm technique (ANN-GA) for efficient tuning of ANN meta parameters. Statistical analysis showed that the proposed method has an average misclassification error of 0.03%. A comparison with selected correlations in the literature showed that the developed ANN-GA method noticeably improved prediction of regime over a wide range of operating conditions, physical properties, and pipe diameters.


2014 ◽  
Vol 902 ◽  
pp. 431-436 ◽  
Author(s):  
A. Shahpanah ◽  
S. Poursafary ◽  
S. Shariatmadari ◽  
A. Gholamkhasi ◽  
S.M. Zahraee

A queuing network model related to arrival, departure and berthing process of ships at port container terminal is presented in this paper. The important datas collected from PTP port container terminal located at Malaysia. Based on the case study the model was built with using Arena 13.5 simulation software. Especially this study proposes a hybrid approach consisting of Genetic algorithm (GA), Artificial Neural Network (ANN) to find the the optimum number of equipments at berthing area of port container terminal. The input data that used in ANN obtained from Arena results. The main goal of this study is reduced waiting time of each ship at port container terminal, and Based on the result the optimum waiting time 50 will be achieved.


2013 ◽  
Vol 3 (4) ◽  
pp. 243-250 ◽  
Author(s):  
Samira Arabgol ◽  
Hoo Sang Ko

Abstract Prompt and proper management of healthcare waste is critical to minimize the negative impact on the environment. Improving the prediction accuracy of the healthcare waste generated in hospitals is essential and advantageous in effective waste management. This study aims at developing a model to predict the amount of healthcare waste. For this purpose, three models based on artificial neural network (ANN), multiple linear regression (MLR), and combination of ANN and genetic algorithm (ANN-GA) are applied to predict the waste of 50 hospitals in Iran. In order to improve the performance of ANN for prediction, GA is applied to find the optimal initial weights in the ANN. The performance of the three models is evaluated by mean squared errors. The obtained results have shown that GA has significant impact on optimizing initial weights and improving the performance of ANN.


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Montri Inthachot ◽  
Veera Boonjing ◽  
Sarun Intakosum

This study investigated the use of Artificial Neural Network (ANN) and Genetic Algorithm (GA) for prediction of Thailand’s SET50 index trend. ANN is a widely accepted machine learning method that uses past data to predict future trend, while GA is an algorithm that can find better subsets of input variables for importing into ANN, hence enabling more accurate prediction by its efficient feature selection. The imported data were chosen technical indicators highly regarded by stock analysts, each represented by 4 input variables that were based on past time spans of 4 different lengths: 3-, 5-, 10-, and 15-day spans before the day of prediction. This import undertaking generated a big set of diverse input variables with an exponentially higher number of possible subsets that GA culled down to a manageable number of more effective ones. SET50 index data of the past 6 years, from 2009 to 2014, were used to evaluate this hybrid intelligence prediction accuracy, and the hybrid’s prediction results were found to be more accurate than those made by a method using only one input variable for one fixed length of past time span.


2015 ◽  
Vol 25 (4) ◽  
pp. 253-261 ◽  
Author(s):  
Zhou Lan ◽  
Chen Zhao ◽  
Weiqun Guo ◽  
Xiong Guan ◽  
Xiaolin Zhang

<b><i>Background:</i></b> Spinosyns, products of secondary metabolic pathway of <i>Saccharopolyspora spinosa</i>, show high insecticidal activity, but difficulty in enhancing the spinosad yield affects wide application. The fermentation process is a key factor in this case. <b><i>Methods:</i></b> The response surface methodology (RMS) and artificial neural network (ANN) modeling were applied to optimize medium components for spinosad production using <i>S. spinosa </i>strain CGMCC4.1365. Experiments were performed using a rotatable central composite design, and the data obtained were used to construct an ANN model and an RSM model. Using a genetic algorithm (GA), the input space of the ANN model was optimized to obtain optimal values of medium component concentrations. <b><i>Results:</i></b> The regression coefficients (R<sup>2</sup>) for the ANN and RSM models were 0.9866 and 0.9458, respectively, indicating that the fitness of the ANN model was higher. The maximal spinosad yield (401.26 mg/l) was obtained using ANN/GA-optimized concentrations. <b><i>Conclusion:</i></b> The hybrid ANN/GA approach provides a viable alternative to the conventional RSM approach for the modeling and optimization of fermentation processes.


2018 ◽  
Vol 7 (2.26) ◽  
pp. 67 ◽  
Author(s):  
A S. Arunachalam ◽  
T Velmurugan

Educational Data Mining (EDM) and Learning Systematic (LS) research have appeared as motivating areas of research, which are clarifying beneficial understanding from educational databases for many purposes such as predicting student’s success factor. The ability to predict a student’s performance can be beneficial in modern educational systems. This research work aims at developing an evolutionary approach based on genetic algorithm and the artificial neural network. The traditional artificial neural network lacks predicting student performance due to the poor modeling structure and the capability of assigning proper weights to each node under the hidden layer. This problem is overwhelmed with the aid of genetic algorithm optimization approach which produces appropriate fitness function evaluation in each iteration of the learning process. The performances gradually increase the accuracy of the prediction and classification more precisely.


2013 ◽  
Vol 20 (3) ◽  
pp. 265-276 ◽  
Author(s):  
Abdolhosein Fereidoon ◽  
Amin Hamed Mashhadzadeh ◽  
Yasser Rostamiyan

AbstractIn spite of Epoxy resin’s good tensile strength, are brittle in nature and have poor resistance at the front of crack propagation. In enhancing simultaneously the mechanical strength and fracture toughness of epoxy-based nanocomposites, high-impact polystyrene (HIPS) as thermoplastic phase and multi-walled carbon nanotubes (MWCNT) as nanofiller phases are used incorporately to obtain ternary epoxy-based nanocomposites. Tensile, flexural, compression and impact are the four different mechanical properties. Artificial neural network was used to present models for predicting the mechanical behavior of epoxy/HIPS/MWCNT nanocomposites. Also, this model used as a fitness function of genetic algorithm as a powerful optimization method to find the optimum value of the above-mentioned mechanical properties. The effective parameters investigated were HIPS, MWCNT and hardener. From the result, it was found that the combination of HIPS and MWCNT nanofillers significantly increases tensile, compression and impact strength of neat resin by up to 52%, 43% and 334%, respectively, but flexural strength did not change positively. Also, elongation at break for tensile, flexural and compression rose to 223%, 36% and 26% of neat epoxy, respectively. The morphology of fracture surface was studied by scanning electron microscopy.


Sign in / Sign up

Export Citation Format

Share Document