scholarly journals Regime identification of slurry transport in pipelines: A novel modelling approach using ANN & differential evolution

2010 ◽  
Vol 16 (4) ◽  
pp. 329-343 ◽  
Author(s):  
Sandip Lahiri ◽  
K.C. Ghanta

Four distinct regimes were found existent (namely sliding bed, saltation, heterogeneous suspension and homogeneous suspension) in slurry flow in pipeline depending upon the average velocity of flow. In the literature, few numbers of correlations has been proposed for identification of these regimes in slurry pipelines. Regime identification is important for slurry pipeline design as they are the prerequisite to apply different pressure drop correlation in different regime. However, available correlations fail to predict the regime over a wide range of conditions. Based on a databank of around 800 measurements collected from the open literature, a method has been proposed to identify the regime using artificial neural network (ANN) modeling. The method incorporates hybrid artificial neural network and differential evolution technique (ANN - DE) for efficient tuning of ANN Meta parameters. Statistical analysis showed that the proposed method has an average misclassification error of 0.03%. A comparison with selected correlations in the literature showed that the developed ANN - DE method noticeably improved prediction of regime over a wide range of operating conditions, physical properties, and pipe diameters. .

Author(s):  
Sandip K Lahiri ◽  
Kartik Chandra Ghanta

Four distinct regimes were found existent (namely sliding bed, saltation, heterogeneous suspension and homogeneous suspension) in slurry flow in pipeline depending upon the average velocity of flow. In the literature, few numbers of correlations has been proposed for identification of these regimes in slurry pipelines. Regime identification is important for slurry pipeline design as they are the prerequisite to apply different pressure drop correlation in different regime. However, available correlations fail to predict the regime over a wide range of conditions. Based on a databank of around 800 measurements collected from the open literature, a method has been proposed to identify the regime using artificial neural network (ANN) modeling. The method incorporates hybrid artificial neural network and genetic algorithm technique (ANN-GA) for efficient tuning of ANN meta parameters. Statistical analysis showed that the proposed method has an average misclassification error of 0.03%. A comparison with selected correlations in the literature showed that the developed ANN-GA method noticeably improved prediction of regime over a wide range of operating conditions, physical properties, and pipe diameters.


Author(s):  
Hadi Salehi ◽  
Mosayyeb Amiri ◽  
Morteza Esfandyari

In this work, an extensive experimental data of Nansulate coating from NanoTechInc were applied to develop an artificial neural network (ANN) model. The Levenberg–Marquart algorithm has been used in network training to predict and calculate the energy gain and energy saving of Nansulate coating. By comparing the obtained results from ANN model with experimental data, it was observed that there is more qualitative and quantitative agreement between ANN model values and experimental data results. Furthermore, the developed ANN model shows more accurate prediction over a wide range of operating conditions. Also, maximum relative error of 3% was observed by comparison of experimental and ANN simulation results.


2009 ◽  
Vol 15 (2) ◽  
pp. 103-117 ◽  
Author(s):  
S.K. Lahiri ◽  
K.C. Ghanta

This paper describes a robust hybrid artificial neural network (ANN) methodology which can offer a superior performance for the important process engineering problems. The method incorporates a hybrid artificial neural network and differential evolution technique (ANN-DE) for the efficient tuning of ANN meta parameters. The algorithm has been applied for the prediction of the hold up of the solid liquid slurry flow. A comparison with selected correlations in the literature showed that the developed ANN correlation noticeably improved the prediction of hold up over a wide range of operating conditions, physical properties, and pipe diameters.


2008 ◽  
Vol 3 (1) ◽  
Author(s):  
S.K. Lahiri ◽  
Kartik Chandra Ghanta

This paper describes a robust hybrid artificial neural network (ANN) methodology, which can offer superior performance for important process engineering problems. The method incorporates hybrid artificial neural network and differential evolution technique (ANN-DE) for efficient tuning of ANN meta parameters. The algorithm has been applied for the prediction of pressure drop of solid liquid slurry flow. A comparison with selected correlations in the literature showed that the developed ANN correlation noticeably improved the prediction of pressure drops over a wide range of operating conditions, physical properties, and pipe diameters.


Author(s):  
Qilun Zhu ◽  
Robert Prucka ◽  
Shu Wang ◽  
Michael Prucka ◽  
Hussein Dourra

Engine cycle-by-cycle combustion variation is a potential source of emissions and drivability issues in automobiles, and has become an important concern for engine control engineers. The nature of turbulent combustion in IC engines means that combustion variations cannot be eliminated completely. Furthermore, it is inevitable for the engine to run at conditions with high combustion variations in most vehicle applications. For example, during gear shifts spark timing can be changed dramatically to help track the fast transitions of torque demand, often resulting in high Coefficient of Variation in Indicated Mean Effective Pressure (COV of IMEP). Under these circumstances, the control engineers have to weigh between combustion variation and other performance demands (i.e. fast torque tracking). An accurate online estimation of COV of IMEP can be beneficial to this process. A calibrated map of COV of IMEP versus engine operating conditions can be an option for engines with few control actuators. As the number of control actuators increases, combustion variation modelling using inputs with physical representations becomes favorable due to the potential for reduced calibration effort. However, since COV of IMEP is a stochastic variable describing the distribution of IMEP output, it can only be modelled empirically. This research proposes a control-oriented real-time COV of IMEP model based on an Artificial Neural Network (ANN) and inputs from turbulent combustion research. The effects of premixed turbulent combustion variation are analyzed with flame regime analysis in this research after a brief introduction of the experimental setup and engine information. In-cylinder thermodynamics are then evaluated to reveal how the changes of heat release transform into the variation of cylinder pressure, producing COV of IMEP. A range of model input parameters are assessed to determine the set that produces the most accurate prediction of IMEP variation with minimal computational requirements. An Artificial Neural Network (ANN) is applied to capture the nonlinear coupled correlations between COV of IMEP and model inputs. The ANN is combined with a regression pretreatment to reduce network size and improve extrapolation stability. This computationally efficient single-layer three-neuron ANN COV of IMEP model achieved 0.29% normalized Root Mean Square Error (RMSE). Dynamometer tests show that the model performs well outside the training region.


Author(s):  
Suleiman M. Suleiman ◽  
Yi-Guang Li

Abstract This paper presents the development of an artificial neural network (ANN) Gas Path Diagnostics (GPD) technique applied to pipeline compression system for fault detection and quantification. The work detailed the various degradation mechanisms and the effect of such degradations on the performance of natural gas compressors. The data used in demonstrating the ANN diagnostics is so derived using an advanced thermodynamic performance simulation model of integrated pipeline and compressor systems, which has embedded empirical compressor map data and pipeline resistance model. Implantation of faults within the model is in such a way to account for faults degradations caused by fouling, erosion and corrosion, of various degrees of severities, to obtain wide range of corresponding simulated “true” measurements. In order to account for uncertainties normally encountered in field measurements, Gaussian noise distribution was combined with simulated true measurements, which depends on the instrument’s tolerances. Furthermore, since judicious measurements selection are crucial in ensuring flawless GPD predictions, a sensitivity and correlation analysis of the available measurements revealed that discharge temperature, rotational speed and torque are the most effective measurements for the diagnostics with acceptable degrees of accuracies. The measurements observability technique is a novel approach in pipeline compressor diagnostics. Analytical case studies of the developed method show that, a selected ANN architecture can detect and quantify faults related to degradation in efficiency and flow capacities in the presence of instrument error, varied operational and environmental conditions.


2016 ◽  
Vol 68 (6) ◽  
pp. 676-682 ◽  
Author(s):  
Bahaa Saleh ◽  
Ayman A. Aly

Purpose The aim of this paper is to evaluate the effect of surface treatment on slurry erosion behavior of AISI 5,117 steel using artificial neural network (ANN) technique. Design/methodology/approach The slurry erosion wear behavior of electroless nickel-phosphorus (Ni-P) coated, carburized and untreated AISI 5,117 alloy steel was investigated experimentally and theoretically using ANN technique based on error back propagation learning algorithm. Findings From the obtained results, it can be concluded that the proposed AAN model can be successfully used for evaluating slurry erosion behavior of the Ni-P coated, carburized and untreated AISI 5,117 steel for wide range of operating conditions and Ni-P coating and carburizing improve the slurry erosion resistance of AISI 5,117 steel; however, the coating is more efficient. Originality/value Slurry erosion is a serious problem for the performance, reliability and service life of engineering components used in many industrial applications. To improve the performance of these components, engineering surface technologies have been attracting a great deal of attention. The extent of slurry erosion is dependent on a wide range of variables. To account all variables that effect on erosion behavior, prediction of erosion behavior by soft computational technique is one of the most important requirements. ANN has the ability to tackle the problem of complex relationships among variables that cannot be accomplished by traditional analytical methods.


Author(s):  
M. G. De Giorgi ◽  
D. Bello ◽  
A. Ficarella

The identification of the water cavitation regime is an important issue in a wide range of machines, as hydraulic machines and internal combustion engine. In the present work several experiments on a water cavitating flow were conducted in order to investigate the influence of pressures and temperature on flow regime transition. In some cases, as the injection of hot fluid or the cryogenic cavitation, the thermal effects could be important. The cavitating flow pattern was analyzed by the images acquired by the high-speed camera and by the pressure signals. Four water cavitation regimes were individuated by the visualizations: no-cavitation, developing, super and jet cavitation. As by image analysis, also by the frequency analysis of the pressure signals, different flow behaviours were identified at the different operating conditions. A useful approach to predict and on-line monitoring the cavitating flow and to investigate the influence of the different parameters on the phenomenon is the application of Artificial Neural Network (ANN). In the present study a three-layer Elman neural network was designed, using as inputs the power spectral density distributions of dynamic differential pressure fluctuations, recorded downstream and upstream the restricted area of the orifice. Results show that the designed neural networks predict the cavitation patterns successfully comparing with the cavitation pattern by visual observation. The Artificial Neural Network underlines also the impact that each input has in the training process, so it is possible to identify the frequency ranges that more influence the different cavitation regimes and the impact of the temperature. A theoretical analysis has been also performed to justify the results of the experimental observations. In this approach the nonlinear dynamics of the bubbles growth have been used on an homogenous vapor-liquid mixture model, so to couple the effects of the internal dynamic bubble with the other flow parameters.


Energies ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 2216 ◽  
Author(s):  
Ravi Kishore ◽  
Roop Mahajan ◽  
Shashank Priya

Thermoelectric generators (TEGs) are rapidly becoming the mainstream technology for converting thermal energy into electrical energy. The rise in the continuous deployment of TEGs is related to advancements in materials, figure of merit, and methods for module manufacturing. However, rapid optimization techniques for TEGs have not kept pace with these advancements, which presents a challenge regarding tailoring the device architecture for varying operating conditions. Here, we address this challenge by providing artificial neural network (ANN) models that can predict TEG performance on demand. Out of the several ANN models considered for TEGs, the most efficient one consists of two hidden layers with six neurons in each layer. The model predicted TEG power with an accuracy of ±0.1 W, and TEG efficiency with an accuracy of ±0.2%. The trained ANN model required only 26.4 ms per data point for predicting TEG performance against the 6.0 minutes needed for the traditional numerical simulations.


Sign in / Sign up

Export Citation Format

Share Document