Using Artificial Neural Network (ANN) for Manipulating Energy Gain of Nansulate Coating

Author(s):  
Hadi Salehi ◽  
Mosayyeb Amiri ◽  
Morteza Esfandyari

In this work, an extensive experimental data of Nansulate coating from NanoTechInc were applied to develop an artificial neural network (ANN) model. The Levenberg–Marquart algorithm has been used in network training to predict and calculate the energy gain and energy saving of Nansulate coating. By comparing the obtained results from ANN model with experimental data, it was observed that there is more qualitative and quantitative agreement between ANN model values and experimental data results. Furthermore, the developed ANN model shows more accurate prediction over a wide range of operating conditions. Also, maximum relative error of 3% was observed by comparison of experimental and ANN simulation results.

Author(s):  
Sandip K Lahiri ◽  
Kartik Chandra Ghanta

Four distinct regimes were found existent (namely sliding bed, saltation, heterogeneous suspension and homogeneous suspension) in slurry flow in pipeline depending upon the average velocity of flow. In the literature, few numbers of correlations has been proposed for identification of these regimes in slurry pipelines. Regime identification is important for slurry pipeline design as they are the prerequisite to apply different pressure drop correlation in different regime. However, available correlations fail to predict the regime over a wide range of conditions. Based on a databank of around 800 measurements collected from the open literature, a method has been proposed to identify the regime using artificial neural network (ANN) modeling. The method incorporates hybrid artificial neural network and genetic algorithm technique (ANN-GA) for efficient tuning of ANN meta parameters. Statistical analysis showed that the proposed method has an average misclassification error of 0.03%. A comparison with selected correlations in the literature showed that the developed ANN-GA method noticeably improved prediction of regime over a wide range of operating conditions, physical properties, and pipe diameters.


2011 ◽  
Vol 189-193 ◽  
pp. 3313-3316
Author(s):  
Xiao Xiang Su ◽  
Yao Dong Gu ◽  
J.P. Finlay ◽  
I.D. Jenkinson ◽  
Xue Jun Ren

Closed cell polymeric foams are widely used in sport and medical equipments. In this study, an artificial neural network (ANN) based inverse finite element (FE) program has been developed and used to predict the nonlinear material properties of EVA foams with multiple layers. A 2-D parametric FE model was developed and validated against experimental data. Systematic data from FE simulations was used to train and validate the ANN model. The accuracy and validity of the ANN method were assessed based on both blind tests and experimental data. Results showed that the proposed artificial neural network model is robust and efficient in predicating the nonlinear parameters of foam materials.


Energies ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 2216 ◽  
Author(s):  
Ravi Kishore ◽  
Roop Mahajan ◽  
Shashank Priya

Thermoelectric generators (TEGs) are rapidly becoming the mainstream technology for converting thermal energy into electrical energy. The rise in the continuous deployment of TEGs is related to advancements in materials, figure of merit, and methods for module manufacturing. However, rapid optimization techniques for TEGs have not kept pace with these advancements, which presents a challenge regarding tailoring the device architecture for varying operating conditions. Here, we address this challenge by providing artificial neural network (ANN) models that can predict TEG performance on demand. Out of the several ANN models considered for TEGs, the most efficient one consists of two hidden layers with six neurons in each layer. The model predicted TEG power with an accuracy of ±0.1 W, and TEG efficiency with an accuracy of ±0.2%. The trained ANN model required only 26.4 ms per data point for predicting TEG performance against the 6.0 minutes needed for the traditional numerical simulations.


2010 ◽  
Vol 16 (4) ◽  
pp. 329-343 ◽  
Author(s):  
Sandip Lahiri ◽  
K.C. Ghanta

Four distinct regimes were found existent (namely sliding bed, saltation, heterogeneous suspension and homogeneous suspension) in slurry flow in pipeline depending upon the average velocity of flow. In the literature, few numbers of correlations has been proposed for identification of these regimes in slurry pipelines. Regime identification is important for slurry pipeline design as they are the prerequisite to apply different pressure drop correlation in different regime. However, available correlations fail to predict the regime over a wide range of conditions. Based on a databank of around 800 measurements collected from the open literature, a method has been proposed to identify the regime using artificial neural network (ANN) modeling. The method incorporates hybrid artificial neural network and differential evolution technique (ANN - DE) for efficient tuning of ANN Meta parameters. Statistical analysis showed that the proposed method has an average misclassification error of 0.03%. A comparison with selected correlations in the literature showed that the developed ANN - DE method noticeably improved prediction of regime over a wide range of operating conditions, physical properties, and pipe diameters. .


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Abolghasem Daeichian ◽  
Rana Shahramfar ◽  
Elham Heidari

Abstract Lime is a significant material in many industrial processes, including steelmaking by blast furnace. Lime production through rotary kilns is a standard method in industries, yet it has depreciation, high energy consumption, and environmental pollution. A model of the lime production process can help to not only increase our knowledge and awareness but also can help reduce its disadvantages. This paper presents a black-box model by Artificial Neural Network (ANN) for the lime production process considering pre-heater, rotary kiln, and cooler parameters. To this end, actual data are collected from Zobahan Isfahan Steel Company, Iran, which consists of 746 data obtained in a duration of one year. The proposed model considers 23 input variables, predicting the amount of produced lime as an output variable. The ANN parameters such as number of hidden layers, number of neurons in each layer, activation functions, and training algorithm are optimized. Then, the sensitivity of the optimum model to the input variables is investigated. Top-three input variables are selected on the basis of one-group sensitivity analysis and their interactions are studied. Finally, an ANN model is developed considering the top-three most effective input variables. The mean square error of the proposed models with 23 and 3 inputs are equal to 0.000693 and 0.004061, respectively, which shows a high prediction capability of the two proposed models.


2004 ◽  
Vol 50 (8) ◽  
pp. 103-110 ◽  
Author(s):  
H.K. Oh ◽  
M.J. Yu ◽  
E.M. Gwon ◽  
J.Y. Koo ◽  
S.G. Kim ◽  
...  

This paper describes the prediction of flux behavior in an ultrafiltration (UF) membrane system using a Kalman neuro training (KNT) network model. The experimental data was obtained from operating a pilot plant of hollow fiber UF membrane with groundwater for 7 months. The network was trained using operating conditions such as inlet pressure, filtration duration, and feed water quality parameters including turbidity, temperature and UV254. Pre-processing of raw data allowed the normalized input data to be used in sigmoid activation functions. A neural network architecture was structured by modifying the number of hidden layers, neurons and learning iterations. The structure of KNT-neural network with 3 layers and 5 neurons allowed a good prediction of permeate flux by 0.997 of correlation coefficient during the learning phase. Also the validity of the designed model was evaluated with other experimental data not used during the training phase and nonlinear flux behavior was accurately estimated with 0.999 of correlation coefficient and a lower error of prediction in the testing phase. This good flux prediction can provide preliminary criteria in membrane design and set up the proper cleaning cycle in membrane operation. The KNT-artificial neural network is also expected to predict the variation of transmembrane pressure during filtration cycles and can be applied to automation and control of full scale treatment plants.


Author(s):  
Hadjira Maouz ◽  
◽  
Asma Adda ◽  
Salah Hanini ◽  
◽  
...  

The concentration of carbonyl is one of the most important properties contributing to the detection of the thermal aging of polymer ethylene propylene diene monomer (EPDM). In this publication, an artificial neural network (ANN) model was developed to predict concentration of carbenyl during the thermal aging of EPDM using a database consisting of seven input variables. The best fitting training data was obtained with the architecture of (7 inputs neurons, 10 hidden neurons and 1 output neuron). A Levenberg Marquardt learning (LM) algorithm, hyperbolic tangent transfer function were used at the hidden and output layer respectively. The optimal ANN was obtained with a high correlation coefficient R= 0.995 and a very low root mean square error RMSE = 0.0148 mol/l during the generalization phase. The comparison between the experimental and calculated results show that the ANN model is able of predicted the concentration of carbonyl during the thermal aging of ethylene propylene diene monomer


2021 ◽  
Vol 5 (2) ◽  
pp. 109-118
Author(s):  
Euis Saraswati ◽  
Yuyun Umaidah ◽  
Apriade Voutama

Coronavirus disease (Covid-19) or commonly called coronavirus. This virus spreads very quickly and even almost infects the whole world, including Indonesia. A large number of cases and the rapid spread of this virus make people worry and even fear the increasing spread of the Covid-19 virus. Information about this virus has also been spread on various social media, one of which is Twitter. Various public opinions regarding the Covid-19 virus are also widely expressed on Twitter. Opinions on a tweet contain positive or negative sentiments. Sentiments of sentiment contained in a tweet can be used as material for consideration and evaluation for the government in dealing with the Covid-19 virus. Based on these problems, a sentiment analysis classification is needed to find out public opinion on the Covid-19 virus. This research uses Artificial Neural Network (ANN) algorithm with the Backpropagation method. The results of this test get 88.62% accuracy, 91.5% precision, and 95.73% recall. The results obtained show that the ANN model is quite good for classifying text mining.


Sign in / Sign up

Export Citation Format

Share Document