scholarly journals Estimation of alongshore distribution of typhoon-generated maximum wave height around the Japanese coast based on wave hindcasting.

1987 ◽  
pp. 131-140
Author(s):  
Masataka YAMAGUCHI ◽  
Yoshio HATADA ◽  
Keiichiro KOBUCHI ◽  
Mikio HINO
1984 ◽  
Vol 1 (19) ◽  
pp. 38
Author(s):  
N.K. Liang ◽  
C.C. Chien

The typhoon wave forecasting technique proposed by C.L. Bretschneider (1) is a good simple method. However, the measured maximum wave height at Nan-Wan Bay (at southern tip of Taiwan) of Ida typhoon is about twice of the hindcasted maximum wave height. In general, the hindcasted maximum typhoon wave height arrives earlier than the measured data for Bretschneider's method as well as the other methods, such as Tang's and Ijima's methods. And as the typhoon is approaching the station, the hindcasted wave heights are smaller than the measured ones. On the contrary, as the typhoon is leaving the station, the hindcasted wave heights are greater than the measured heights. In order to improve these defects, the typhoon swell proposed by Liang (7) is superimposed upon the typhoon wind wave according to the energy conservation principle. The modified wave period is calculated by the energy-weighted method. In this paper 8 typhoons are as examples to show that the new method has amended the above-mentioned defects.


2008 ◽  
pp. 127-138 ◽  
Author(s):  
Gerrit Burgers ◽  
Frits Koek ◽  
Hans de Vries ◽  
Martin Stam

Author(s):  
Riko Morita ◽  
Taro Arikawa

Along with the 2011 Great East Japan Earthquake (Mw 9.0), a huge tsunami exceeding a maximum wave height of 15 m occurred. Many people and objects were destroyed and drifted by the tsunami. In addition, these debris were transported to various places that could not be predicted, resulting in significant secondary damage and increase in the number of missing. Therefore, in order to reduce the amount of damage, it is important to predict the behavior and landing points of person after set adrift in a tsunami. The best way to increase the rescue rate is to predict in advance the area that people will be drifted, and prioritize searching operations at that area. Although there has been considerable number of studies which handle the drifting behavior of containers and ships (e.g., Kaida et al., 2016), the prediction of drifting areas focusing on people has not been conducted. Moreover, a drifting area prediction method has not yet been established. The purpose of this study is to conduct a hydraulic experiment using a flat water tank, and observe the drifting area of the drifting object. Then, we conducted numerical calculations and compared simulation results with the experimental ones.Recorded Presentation from the vICCE (YouTube Link): https://youtu.be/1yhKuodhCbg


2019 ◽  
Vol 8 (2) ◽  
pp. 55
Author(s):  
Ary Afriady ◽  
Tasdik Mustika Alam ◽  
Mochamad Furqon Mustika Azis Ismail

Analisis data angin dilakukan untuk meramalkan dan menentukan karakteristik gelombang laut di perairan Pulau Natuna. Data angin yang digunakan dalam penelitian ini berasal dari National Centers for Environmental Prediction (NCEP) selama 10 tahun dari tahun 2009 sampai dengan tahun 2018. Metoda yang digunakan untuk estimasi tinggi, periode dan arah gelombang laut yang dibangkitkan oleh angin adalah metode Svedrup, Munk dan Bretschneider (SMB). Hasil perhitungan peramalan karakteristik gelombang diperoleh bahwa pembentukan gelombang didominasi oleh arah yang berasal dari timur laut dan terjadi pada musim barat dan musim peralihan 1. Adapun pada musim timur dan peralihan, arah dominan gelombang masing-masing berasal dari selatan dan barat daya. Tinggi gelombang maksimum 1,0-1,4 m sering terjadi pada musim musim timur, adapun tinggi gelombang minimum 0,2-0,6 m dominan terjadi pada musim musim peralihan. Periode gelombang dominan ditemukan pada kisaran 7-9 detik yang terjadi pada tiap musim.  The analysis of wind data has been done to forecast and determine the characteristic of the ocean wave in Natuna Island waters. The wind data in this study came from the National Centers for Environmental Prediction (NCEP) for a period of 10 years from 2009 to 2018. The method to estimate wave height, wave period, and wave direction generated by wind is Sverdrup, Munk dan Bretschneider (SMB) system. The results of wave forecasting analysis show that the formation of the wave is mainly originated from the northeast which occurs during the west and first transition season. As for the east and second transition season, the origin of wave formation coming from the south and southwest, respectively. The maximum wave height of 1.0-1.4 m frequently occurs during the east monsoon, while the minimum wave height. The dominant wave period is found in the range of 7-9 seconds, which occurs in every season. 


Author(s):  
Tomoki Taniguchi ◽  
Shigesuke Ishida ◽  
Toshifumi Fujiwara ◽  
Shunji Inoue

There is an increasing need for utilization of ocean renewable energy (ORE) around Japanese coast because Japan is surrounded by ocean. Because technologies for harnessing ORE have not been mature enough, Japanese government selects some demonstration sites for ORE devices and some demonstration projects are going. As these projects are progressed, the operation and maintenance (O&M) activities will increase and become essential factors for the success of demonstration projects. Hence, weather window analysis is required to quantify the levels of access for ORE devices in the demonstration projects, and commercial projects in the future. In this paper, two new parameters are proposed in order to evaluate accessibility to ORE devices. One is the operational probability, and the other is the forecasted waiting time. The operational probability assesses weather duration with considering variability of wave condition. The forecasted waiting time is an expectation value of waiting time before O&M planners get next chance to arrange the O&M activities. In order to check the effectivity of the proposed 2 parameters, accessibility is evaluated for significant wave height in terms of the 2 proposed parameters, these are • Operational probability • Forecasted waiting time and 3 conventional parameters, these are • Excess probability • Persistence probability • Waiting time between windows The accessibility is evaluated at two locations along the Japanese coast. This study reveals that large differences are caused between persistence probability and operational probability when operational wave height limit occurs intermittently and required window length is long. The forecasted waiting time has the same variation tendency as the waiting time between windows.


1974 ◽  
Vol 1 (14) ◽  
pp. 100 ◽  
Author(s):  
Yoshimi Goda

A proposal is made for new wave pressure formulae, which can be applied for the whole ranges of wave action from nonbreaking to postbreaking waves with smooth transition between them. The design wave height is specified as the maximum wave height possible at the site of breakwater. The new formulae as well as the existing formulae of Hiroi, Sainflou, and Minikin have been calibrated with the cases of 21 slidings and 13 nonslidings of the upright sections of prototype breakwaters. The calibration establishes that the new formulae are the most accurate ones.


Sign in / Sign up

Export Citation Format

Share Document