scholarly journals A TYPHOON WAVE HINDCASTING TECHNIQUE

1984 ◽  
Vol 1 (19) ◽  
pp. 38
Author(s):  
N.K. Liang ◽  
C.C. Chien

The typhoon wave forecasting technique proposed by C.L. Bretschneider (1) is a good simple method. However, the measured maximum wave height at Nan-Wan Bay (at southern tip of Taiwan) of Ida typhoon is about twice of the hindcasted maximum wave height. In general, the hindcasted maximum typhoon wave height arrives earlier than the measured data for Bretschneider's method as well as the other methods, such as Tang's and Ijima's methods. And as the typhoon is approaching the station, the hindcasted wave heights are smaller than the measured ones. On the contrary, as the typhoon is leaving the station, the hindcasted wave heights are greater than the measured heights. In order to improve these defects, the typhoon swell proposed by Liang (7) is superimposed upon the typhoon wind wave according to the energy conservation principle. The modified wave period is calculated by the energy-weighted method. In this paper 8 typhoons are as examples to show that the new method has amended the above-mentioned defects.

2019 ◽  
Vol 8 (2) ◽  
pp. 55
Author(s):  
Ary Afriady ◽  
Tasdik Mustika Alam ◽  
Mochamad Furqon Mustika Azis Ismail

Analisis data angin dilakukan untuk meramalkan dan menentukan karakteristik gelombang laut di perairan Pulau Natuna. Data angin yang digunakan dalam penelitian ini berasal dari National Centers for Environmental Prediction (NCEP) selama 10 tahun dari tahun 2009 sampai dengan tahun 2018. Metoda yang digunakan untuk estimasi tinggi, periode dan arah gelombang laut yang dibangkitkan oleh angin adalah metode Svedrup, Munk dan Bretschneider (SMB). Hasil perhitungan peramalan karakteristik gelombang diperoleh bahwa pembentukan gelombang didominasi oleh arah yang berasal dari timur laut dan terjadi pada musim barat dan musim peralihan 1. Adapun pada musim timur dan peralihan, arah dominan gelombang masing-masing berasal dari selatan dan barat daya. Tinggi gelombang maksimum 1,0-1,4 m sering terjadi pada musim musim timur, adapun tinggi gelombang minimum 0,2-0,6 m dominan terjadi pada musim musim peralihan. Periode gelombang dominan ditemukan pada kisaran 7-9 detik yang terjadi pada tiap musim.  The analysis of wind data has been done to forecast and determine the characteristic of the ocean wave in Natuna Island waters. The wind data in this study came from the National Centers for Environmental Prediction (NCEP) for a period of 10 years from 2009 to 2018. The method to estimate wave height, wave period, and wave direction generated by wind is Sverdrup, Munk dan Bretschneider (SMB) system. The results of wave forecasting analysis show that the formation of the wave is mainly originated from the northeast which occurs during the west and first transition season. As for the east and second transition season, the origin of wave formation coming from the south and southwest, respectively. The maximum wave height of 1.0-1.4 m frequently occurs during the east monsoon, while the minimum wave height. The dominant wave period is found in the range of 7-9 seconds, which occurs in every season. 


Ocean Science ◽  
2018 ◽  
Vol 14 (5) ◽  
pp. 1321-1327 ◽  
Author(s):  
Kirill Bulgakov ◽  
Vadim Kuzmin ◽  
Dmitry Shilov

Abstract. A method of calculation of wind wave height probability based on the significant wave height probability is described (Chalikov and Bulgakov, 2017). The method can also be used for estimation of the height of extreme waves of any given cumulative probability. The application of the method on the basis of long-term model data is presented. Examples of averaged annual and seasonal fields of extreme wave heights obtained using the above method are given. Areas where extreme waves can appear are shown.


1972 ◽  
Vol 1 (13) ◽  
pp. 3 ◽  
Author(s):  
J.R. Wilson ◽  
W.F. Baird

The significant wave height and peak period as derived from the spectral analysis of 171 measured wave records taken in the ocean off Western Head, Nova Scotia are compared to the more classical parameters derived from individual wave heights and by the Tucker method. The highest surface elevation and the maximum wave height occurring in the records are compared to values predicted by Cartwright and Longuet-Higgins (1956), Goda (1970), and Longuet-Higgins (1952).


2021 ◽  
Vol 21 (2) ◽  
pp. 107-120
Author(s):  
Dat Pham Tien ◽  
Huan Nguyen Minh ◽  
Anh Nguyen Phuong

Calculating waves generated by typhoons is one of the most important tasks for wave forecasting at a stormy region like the East Vietnam Sea. It is, however, difficult to access the accuracy of calculated wave heights due to the lack of observed data. An approach of combining numerical models and satellite data has been widely used. In this study, we used the WAVEWATCH III model to stimulate wave fields caused by three strong typhoons: Damrey (2005), Ketsana (2009) and Haiyan (2013), then compared significant wave heights with the merged satellite observations. The results show that the BIAS values are small and negative, indicating that the wave heights from the model are lower than those from satellites in all cases. In contrast, the RMSE values of the three cases are considerably different but are still below 1 m. Finally, the average correlation coefficient is highest in typhoon Damrey (r = 0.94) whereas in typhoon Ketsana and Haiyan, r = 0.84 and r = 0.87, respectively. In conclusion, the study suggests that the WAVEWATCH III model has good performance for typhoon wave calculations and can be useful for wave forecasting in the East Vietnam Sea.


Author(s):  
Setiyawan Setiyawan ◽  
N. Abdulrahim

The alternatives to overcome electricity shortage in Indonesia is wave generating. One of the methods conducted in this research is OWC (Oscilating Water Column) based on study area criteria (Marana Village). OWC method can convert ocean wave energy atwave columnoscillationto generate electricity. To be able to produce electricity, this OWC device will train the wave energy through the OWC door hole. This research determine the amount of waves that can be utilized in Marana waters to be converted into units of electricity (watts). The amount of wave height that can be used, depends on the amount of wind that is in the waters of Marana. In addition to wave height, tidal is also needed to know the placement of Oscilating Water Column (OWC) is so that when the tidal water occurs, OWC is still in the condition of the wave. In addition, the bathymetry of the sea is also needed to know at the depth of how placed this OWC. Based on the results obtained from wave forecasting using the 2002-2006 wind data obtained maximum wave height for 5 years is 0.204 m in Year 2003. Which can generate electricity of 0.688 watts. Where from concluded in Marana waters do not have the potential to build Sea Wave Power Plant.


Sign in / Sign up

Export Citation Format

Share Document