Mathematical Modeling and Finite Element Analysis of Elastic-Plastic Behavior.

1981 ◽  
Author(s):  
Ranbir S. Sandhu

Author(s):  
A. Ajdari ◽  
P. K. Canavan ◽  
H. Nayeb-Hashemi ◽  
G. Warner

Three-dimensional structure of trabecular bone can be modeled by 2D or 3D Voronoi structure. The effect of missing cell walls on the mechanical properties of 2D honeycombs is a first step towards understanding the effect of local bone resorption due to osteoporosis. In patients with osteoporosis, bone mass is lost first by thinning and then by resorption of the trabeculae [1]. Furthermore, creep response is important to analyze in cellular solids when the temperature is high relative to the melting temperature. For trabecular bone, as body temperature (38 °C) is close to the denaturation temperature of collagen (52 °C), trabecular bone creeps [1]. Over the half of the osteoporotic vertebral fractures that occur in the elderly, are the result of the creep and fatigue loading associated with the activities of daily living [2]. The objective of this work is to understand the effect of missing walls and filled cells on elastic-plastic behavior of both regular hexagonal and non-periodic Voronoi structures using finite element analysis. The results show that the missing walls have a significant effect on overall elastic properties of the cellular structure. For both regular hexagonal and Voronoi materials, the yield strength of the structure decreased by more than 60% by introducing 10% missing walls. In contrast, the results indicate that filled cells have much less effect on the mechanical properties of both regular hexagonal and Voronoi materials.





2001 ◽  
Vol 36 (4) ◽  
pp. 373-390 ◽  
Author(s):  
S. J Hardy ◽  
M. K Pipelzadeh ◽  
A. R Gowhari-Anaraki

This paper discusses the behaviour of hollow tubes with axisymmetric internal projections subjected to combined axial and internal pressure loading. Predictions from an extensive elastic and elastic-plastic finite element analysis are presented for a typical geometry and a range of loading combinations, using a simplified bilinear elastic-perfectly plastic material model. The axial loading case, previously analysed, is extended to cover the additional effect of internal pressure. All the predicted stress and strain data are found to depend on the applied loading conditions. The results are normalized with respect to material properties and can therefore be applied to geometrically similar components made from other materials, which can be represented by the same material models.



2012 ◽  
Vol 468-471 ◽  
pp. 2517-2520 ◽  
Author(s):  
Xin Ying Xie ◽  
Xin Sheng Yin

In this paper ,it analyses the push-extend multi-under-reamed pile in use of elastic-plastic theory by the software ANSYS.It takes four push-extend multi-under-reamed piles which are the same except plates' distance.It introduces the realative theory to make the anlysis much more accuracy.The results which is taken by ANSYS are researched to find out the regularity and can certain the reasonable plate's distance to anlyze the bearing capacity of push-extend multi-under-reamed pile at the same time.



Sign in / Sign up

Export Citation Format

Share Document