scholarly journals BENDING ANALYSIS OF RECTANGULAR PLATES WITH VARIABLE THICKNESS

1983 ◽  
Vol 1983 (338) ◽  
pp. 21-28 ◽  
Author(s):  
Takeshi SAKIYAMA ◽  
Hiroshi MATSUDA
Author(s):  
Khuc Van Phu ◽  
Le Xuan Doan ◽  
Nguyen Van Thanh

 In this paper, the governing equations of rectangular plates with variable thickness subjected to mechanical load are established by using the classical plate theory, the geometrical nonlinearity in von Karman-Donnell sense. Solutions of the problem are derived according to Galerkin method. Nonlinear dynamic responses, critical dynamic loads are obtained by using Runge-Kutta method and the Budiansky–Roth criterion. Effect of volume-fraction index k and some geometric factors are considered and presented in numerical results.


1989 ◽  
Vol 111 (1) ◽  
pp. 101-103 ◽  
Author(s):  
Wei-Cheun Liu ◽  
Stanley S. H. Chen

The problem vibration of rectangular orthotropic plates with variable thickness and mixed boundary conditions are solved by a modified energy method. A general expression is written for the deflection of the plate without aiming at any particular combination of boundary conditions. Boundary conditions are satisfied approximately by adjusting a set of so-called fixity factors. A computer program has been developed to solve for natural frequencies of plates with variable thicknesses and having different orthotropic properties.


1973 ◽  
Vol 40 (3) ◽  
pp. 745-751 ◽  
Author(s):  
D. S. Chehil ◽  
S. S. Dua

A perturbation technique is employed to determine the critical buckling stress of a simply supported rectangular plate of variable thickness. The differential equation is derived for a general thickness variation. The problem of bending, vibration, buckling, and that of dynamic stability of a variable thickness plate can be deduced from this equation. The problem of buckling of a rectangular plate with simply supported edges and having general variation in thickness in one direction is considered in detail. The solution is presented in a form such as can be easily adopted for computing critical buckling stress, once the thickness variation is known. The numerical values obtained from the present analysis are in excellent agreement with the published results.


Sign in / Sign up

Export Citation Format

Share Document