scholarly journals PREDITCTION OF LAND SUBSIDENCE CONSIDERING THE VARIATION OF GROUNDWATER EXTRACTION IN BANGKOK

2006 ◽  
Vol 62 (1) ◽  
pp. 25-40 ◽  
Author(s):  
Hiroyasu OHTSU ◽  
Noppadol PHIENWEJ ◽  
Nutthapon SUPAWIWAT ◽  
Kenji TAKAHASHI ◽  
Hiroaki IZUMI
Author(s):  
Henk Kooi ◽  
Gilles Erkens

Abstract. Creep and secondary consolidation are important phenomena in settlement caused by surface loads, but not commonly considered in land subsidence driven by groundwater extraction. To explore the role of creep in such settings, a new MODFLOW-2005 land subsidence package was developed that incorporates a creep formulation gleaned from geotechnical software. This formulation, which is based on the isotache concept, is an extension of, and incorporates the classical elastoplastic compression model of Terzaghi as a limiting case. The package is introduced, and results are presented of an application to a site in northern Jakarta. It is shown that the isotache model requires considerably higher overconsolidation levels of clays than the Terzaghi model, and that creep contributes to subsidence long after drawdown in pumped aquifers has stabilized, a phenomenon that is traditionally attributed to “hydrodynamic lag”.


2020 ◽  
Vol 153 ◽  
pp. 02003
Author(s):  
Putu Edi Yastika ◽  
Norikazu Shimizu ◽  
Ni Nyoman Pujianiki ◽  
I Gede Rai Maya Temaja ◽  
I Nyoman Gede Antara ◽  
...  

Numerous cities around the world are facing the problem of land subsidence. In many cases, it is the excessive groundwater extraction to meet human needs that leads to this subsidence. Since land subsidence rates are very slow (a few centimeters per year), the subsidence usually remains unnoticed until it has progressed to the point of causing severe damage to buildings, houses, and/or other infrastructures. Therefore, it is very important to detect the presence of subsidence in advance. In this study, screening for the presence of land subsidence in the city of Denpasar, Bali, Indonesia is conducted. The Sentinel-1A/B SAR dataset, taken from October 2014 to June 2019, is processed using the SBAS DInSAR method. Subsidence is found in the districts of Denpasar Selatan, Denpasar Barat, and Kuta, which falls in the range of -100 mm to -200 mm in an area of about 93.03 ha. All the extracted points of interest show the subsidence having linear behavior. The spatio-temporal behavior of the subsidence in Denpasar is presented clearly. However, the mechanism and the deriving factors of the subsidence remain unclear. Therefore, further studies are needed.


2019 ◽  
Vol 85 ◽  
pp. 07015 ◽  
Author(s):  
Alina Radutu ◽  
Radu Constantin Gogu

Land subsidence affects urban areas worldwide. Sometimes it could be driven by intensive groundwater withdrawal to assure different urban needs and functionalities. Some of these urban areas have a long history of subsidence that covers almost a century. The aim of this paper is to present the evolution of several urban areas affected by land subsidence, the methods used to monitor vertical displacements along the decades in relationship to the groundwater extraction associated to the urban expansion, and the mitigation techniques used for countering the effects of intensive groundwater withdrawal. Even the originally applied subsidence monitoring methods (such as geometric levelling) are still very sensitive, in terms of time consuming, covered area, and financial effort, these methods might be complemented by new methods based on Synthetic Aperture Radar Interferometry (InSAR). InSAR methods show also a significant progress during the last decades when considering the subsidence sensed order of magnitude.


2016 ◽  
Vol 8 (6) ◽  
pp. 468 ◽  
Author(s):  
Mi Chen ◽  
Roberto Tomás ◽  
Zhenhong Li ◽  
Mahdi Motagh ◽  
Tao Li ◽  
...  

2020 ◽  
Author(s):  
Hieu Ngo ◽  
Roshanka Ranasinghe ◽  
Chris Zevenbergen ◽  
Ebru Kirezci ◽  
Dikman Maheng ◽  
...  

Abstract. Flood risk management and planning decisions in many parts of the world have historically utilised flood hazard or risk maps for a very limited number of hazard scenarios (e.g. river water levels), mainly due to computational challenges. With the potentially massive increase in flood risk in future due to the combination of climate change effects (increasing the hazard) and increasing population and developments in floodplains (increasing the consequence), risk-informed flood risk management, which enables balancing the risk with the reward, is now becoming more and more sought after. This requires a comprehensive and quantitative risk assessment, which in turn demands multiple (thousands of) river and flood model simulations. Performing such a large number of model simulations is a challenge, especially for large, complex river systems (e.g. Mekong) due to the associated computational and resource demands. This article presents an efficient modelling approach that combines a simplified 1D hydrodynamic model for the entire Mekong Delta with a detailed 1D/2D coupled model and demonstrates its application at Can Tho city in the Mekong Delta. Probabilistic flood hazard maps, ranging from 0.5 yr to 100 yr return period events, are obtained for the urban centre of Can Tho city under different future scenarios taking into account the impact of climate change forcing (river flow, sea-level rise, storm surge) and land subsidence. Results obtained under present conditions show that more than 12 % of the study area is inundated by the present-day 100 yr return period water level. Future projections show that, if the present rate of land subsistence continues, by 2050 (under both RCP4.5 and RCP8.5 climate scenarios), the 0.5 yr and 100 yr return period flood extents will increase by around 15-fold and 8-fold, respectively, relative to the present-day flood extent. However, without land subsidence, the projected increases in the 0.5 yr and 100 yr return period flood extents by 2050 (under RCP4.5 and RCP8.5) are limited to between a doubling to tripling of the present-day flood extent. Therefore, adaptation measures that can reduce the rate of land subsidence (e.g. limiting groundwater extraction), would substantially mitigate future flood hazards in the study area. A combination of restricted groundwater extraction and the construction of a new and more efficient urban drainage network would facilitate even further reductions in the flood hazard. The projected 15-fold increase in flood extent projected by 2050 for the twice per year (0.5 yr return period) flood event implies that the do nothing management approach is not a feasible option for Can Tho.


2012 ◽  
Vol 241-244 ◽  
pp. 2578-2582
Author(s):  
Guo Dong Wang ◽  
Jian Cheng Kang ◽  
Guo Dong Yan ◽  
Qin Chen Han

Land subsidence has become a major geological hazard in Shanghai . Based on the view of system theory, The paper sets a numerical model of land subsidence, the results of model simulation are as follows: 1) the speed of land subsidence will be 8.81mm/a in Shanghai in the next 10 years if it can maintain present trends of load increase and groundwater mining; 2) Since 1998, we adjust the ratio of groundwater extraction and filling to 1:1, the accumulated quantity of land subsidence will rebound to 30mm in 2017, from 2018, it will continue to drop. However, the overall future land subsidence will keep the trend of slow growth; 3) Double the exploitation capacity in1998, the speed of land subsidence will be 41mm/a in 2020, the accumulative quantity of land subsidence will be close to 1m. According to the average high tide level (5.15m) in the Huangpu River in 2000-2008, the actual average high tide level of the Huangpu River will reach about 6m and exceed the orange warning response against flood and typhoon in Shanghai. If superimposing sea level rise and strong typhoon disasters, it will face with more serious flood risk.


Sign in / Sign up

Export Citation Format

Share Document