scholarly journals INVESTIGATION OF BEHAVIOR OF PILE GROUP BY IN-SITU LATERAL LOADING TEST ON 63 GROUP PILE OF LNG TANK FOUNDATION

Author(s):  
Shuntaro TERAMOTO ◽  
Makoto KIMURA ◽  
Takeyoshi NISHIZAKI ◽  
Tomonari NIIMURA ◽  
Akio INOUE ◽  
...  
2013 ◽  
Vol 45 ◽  
pp. 35-44 ◽  
Author(s):  
Jianguang Yue ◽  
Jiang Qian ◽  
Tuo Lei ◽  
Liang Lu ◽  
Xilin Lu

2018 ◽  
Vol 58 (4) ◽  
pp. 819-837 ◽  
Author(s):  
Shuntaro Teramoto ◽  
Tomonari Niimura ◽  
Tomihiro Akutsu ◽  
Makoto Kimura

2002 ◽  
pp. 97-107 ◽  
Author(s):  
Makoto KIMURA ◽  
Hiroshi MAKING ◽  
Katsunori OKAWA ◽  
Hiroyuki KAMEI ◽  
Feng ZHANG

Author(s):  
R SureshKumar ◽  
R BharathKumar ◽  
L MohanKumar ◽  
J Visuvasam ◽  
V Sairam

Pondasi ◽  
2020 ◽  
Vol 23 (2) ◽  
pp. 1
Author(s):  
Adi Sunarno ◽  
Rinda Karlinasari ◽  
Abdul Rochim

ABSTRACTThe rapid infrastructure development is one of the indicators on the country economic progress. Indonesia as one of the largest archipelagic countries in the world, should be prioritized the port infrastructure to support the maritime. One of the government’s solutions is infrastructure development of Kuala Tanjung port. This research analyzed bearing capacity and settlement of single and group pile foundation on port infrastructure of Kuala Tanjung so it is known that the port is safe to use. The data used are Standard Penetration Test data with soil stratigraphy that is clay and sand. The type of foundation used is Concrete Spun Pile 1000 mm and 600 mm with a pile length of 36 meters. The data are then analyzed by manual calculation and Allpile 6.5E program based on Reese method and methods such as Vesic and Converse-Labarre. The results showed that single pile foundations of 1000 mm and 600 mm each had allowable capacity (Qall) 492.78-538.81 ton and 110.65-128.31 ton, with vertical load (Q) of 330.90 ton, settlement 0.56-1.17 cm and 3.32-3.64 cm, lateral deflection 27.50 cm and 94.90 cm. While the 1000 mm and 600 mm pile group foundations respectively have Qall 8717.31-10796.29 tons and 2059.25-2566.32 tons, with Q of 6618 tons, settlement 0.56-1.68 cm and 3.32-3.64 cm, lateral deflection of 2.49 cm and 19.49 cm. The conclusion of the research indicates that the safe pile foundation used is 1000 mm group pile foundation. Keywords: Bearing Capacity; Foundations; Pile Foundation; Port Infrastructure; Settlement


Author(s):  
Pietro Teatini ◽  
Cristina Da Lio ◽  
Luigi Tosi ◽  
Alessandro Bergamasco ◽  
Stefano Pasqual ◽  
...  

Abstract. The fate of coastal marshlands in the near future will strongly depend on their capability to maintain their elevation above a rising mean sea level. Together with the deposition of inorganic sediments during high tides, organic soil production by halophytic vegetation, and organic matter decomposition, land subsidence due to natural soil compression is a major factor controlling the actual elevation of salt-marsh platforms. Due to their high porosity and compressibility, the marsh sedimentary body undergoes large compression because of the load of overlying more recent deposits. The characterization of the geotechnical properties of these deposits is therefore of paramount importance to quantify consolidation versus accretion and relative sea level rise. However, undisturbed sampling of this loose material is extremely challenging and lab tests on in-situ collected samples are not properly representative of in-situ conditions due to the scale effects in highly heterogeneous silty soils such as those of the Venice lagoon. To overcome this limitation, an in-situ loading test was carried out in the Lazzaretto Nuovo salt-marsh in the Venice Lagoon, Italy. The load is obtained by a number of plastic tanks that are filled with seawater, reaching a cumulative load of 40 kN applied on a 2.5×1.8 m2 surface. Specific instrumentations were deployed before positioning the tanks to measure soil vertical displacement at various depths below the load (0, 10, and 50 cm) and distances (0, 40, and 80 cm) from the load centre. Moreover, six pressure transducers were used to record overpressure dissipation over time. The collected datasets will be interpreted through a 3-D flow-deformation model that, once calibrated, provides reliable estimates of the compressibility values for each monitored depth interval.


Sign in / Sign up

Export Citation Format

Share Document