TBS2 General recommendation for statical loading test of load-bearing concrete structures in situ

2020 ◽  
Vol 2 ◽  
pp. 3-18
Author(s):  
Ali Saberi Varzaneh ◽  
Mahmoud Naderi

Considering the differences between environmental conditions of concrete structures and laboratory conditions, it is important to determine the parameters of the materials at the site of the structure. One of these materials is cement-based repair mortars due to the damage of concrete structures that may arise due to chemical or physical factors, these structures are required to be repaired. For this reason, in this paper, to determine the strength of repair mortars of different ages and under different Curing, Situ methods "Friction-Transfer" and "Pull-off" were used and the relationships between the Flexural Compressive, Tensile and readings obtained from the above methods on cementations mortars are presented. Experiments were performed on mortars at ages 3, 7, 28, 42 and 90 days under the conditions of "waterlogging", "Curing Agent" and "releasing in the outdoor". The results show the high impact of the process on the Flexural Compressive, Tensile of the repair mortars and the results of the "Friction-Transfer" and "Pull-off" methods. Also, a high correlation coefficient was obtained between the mechanical properties of the mortars and the results of the above tests; it is possible to measure the mechanical properties of repair mortars in situ with high confidence and in situ


Author(s):  
Pietro Teatini ◽  
Cristina Da Lio ◽  
Luigi Tosi ◽  
Alessandro Bergamasco ◽  
Stefano Pasqual ◽  
...  

Abstract. The fate of coastal marshlands in the near future will strongly depend on their capability to maintain their elevation above a rising mean sea level. Together with the deposition of inorganic sediments during high tides, organic soil production by halophytic vegetation, and organic matter decomposition, land subsidence due to natural soil compression is a major factor controlling the actual elevation of salt-marsh platforms. Due to their high porosity and compressibility, the marsh sedimentary body undergoes large compression because of the load of overlying more recent deposits. The characterization of the geotechnical properties of these deposits is therefore of paramount importance to quantify consolidation versus accretion and relative sea level rise. However, undisturbed sampling of this loose material is extremely challenging and lab tests on in-situ collected samples are not properly representative of in-situ conditions due to the scale effects in highly heterogeneous silty soils such as those of the Venice lagoon. To overcome this limitation, an in-situ loading test was carried out in the Lazzaretto Nuovo salt-marsh in the Venice Lagoon, Italy. The load is obtained by a number of plastic tanks that are filled with seawater, reaching a cumulative load of 40 kN applied on a 2.5×1.8 m2 surface. Specific instrumentations were deployed before positioning the tanks to measure soil vertical displacement at various depths below the load (0, 10, and 50 cm) and distances (0, 40, and 80 cm) from the load centre. Moreover, six pressure transducers were used to record overpressure dissipation over time. The collected datasets will be interpreted through a 3-D flow-deformation model that, once calibrated, provides reliable estimates of the compressibility values for each monitored depth interval.


2011 ◽  
Vol 243-249 ◽  
pp. 2314-2323 ◽  
Author(s):  
Peng Liu ◽  
Guang Hua Yang ◽  
Yu Cheng Zhang

The settlement of each part of the composite foundation, such as the foundation mat, cushion, soils and pile head, is recognized as equivalent under normal working conditions. On the basis of this, the corresponding load on long-short pile and soils can be derived easily from each individual p-s curve. The p-s curve of the composite foundation can be pictured in terms of the mutual actions of all the components mentioned above. and thus the corresponding settlement with load will be determined. Meanwhile, the p-s curve can be obtained via the undisturbed soil hyperbola tangent modulus method, which not only characters the nonlinear relationship between load and settlement very well, but also shows the deformation compatibility among those components. It is found that designed bearing capacity of soil is much higher than the reality based on usual design norms of composite foundation, while pile load is greater than the designed ones, which can be credited to the deformation compatibility of pile-soil not considered.


Sign in / Sign up

Export Citation Format

Share Document