ON SAFETY AGAINST SEEPAGE FAILURE OF GENTLY SLOPING LEVEE BASED ON LEVEE VULNERABILITY INDEX IN THE TOKACHI RIVER DURING 2016 FLOOD AND FUTURE LEVEE DESIGN FOR LEVEE FAILURE RISK REDUCTION

Author(s):  
Shoji FUKUOKA ◽  
Shuji ISHIZUKA ◽  
Kosuke TABATA
2019 ◽  
Author(s):  
Mark Bawa Malgwi ◽  
Sven Fuchs ◽  
Margreth Keiler

Abstract. Although the vulnerability indicator method has been applied to several data-scarce regions, a missing linkage with damage grades had hindered its application for loss evaluation to complement disaster risk reduction efforts. To address this gap, we present a review of physical vulnerability indicators and flood damage models to gain insights on best practice. Thereafter, we present a conceptual framework for linking the vulnerability indicators and damage grades using three phases (i) developing a vulnerability index, (ii) identifying regional damage grades, and (iii) linking vulnerability index classes with damage grades. The vulnerability index comprehensively integrates elements of the hazard using a Building Impact Index (BII) on one hand, and exposure, susceptibility and local protection elements using a Building Resistance Index (BRI) on the other hand. For the damage grades, local expert assessments are used for identifying and categorizing frequently observed regional damage patterns. Finally, by means of synthetic what-if analysis, experts are asked to estimate damage grades for each interval of the BII and class of BRI to develop a vulnerability curve. The proposed conceptual framework can be used for damage prediction in data-scarce regions to support loss assessment and to provide guidance for disaster risk reduction.


2019 ◽  
Vol 21 (4) ◽  
pp. 445-448 ◽  
Author(s):  
Setor K. Kunutsor ◽  
Jari A. Laukkanen

2021 ◽  
Vol 5 (2) ◽  
pp. 155-170
Author(s):  
Baharinawati W. Hastanti ◽  
◽  
Arina Miardini

Penilaian indeks kerentanan longsor sangat diperlukan dalam upaya pengurangan risiko bencana. Kerentanan bencana tanah longsor di Kecamatan Banjarmangu dihitung berdasarkan hasil perhitungan indeks kerentanan pada Peraturan Kepala BNPB Nomor 2 Tahun 2012 tentang Pedoman Umum Pengkajian Bencana. Penilaian kerentanan bencana tanah longsor menggunakan variabel kerentanan sosial, kerentanan ekonomi, kerentanan fisik, dan kerentanan lingkungan. Nilai indeks kerentanan dinyatakan dalam skala numerik dari 0 sampai 1 bergantung pada intensitas longsor yang terjadi. Hasil penilaian indeks kerentanan longsor berkisar antara 0,37-0,91 dengan rincian 12,78% dari total luas wilayah tergolong sangat tinggi (Desa Kesenet dan Kalilunjar), 57,86% tinggi (Jenggawur, Beji, Sijenggung, Sipedang, Banjarmangu, Rejasari, Sigeblog, Paseh dan Kendaga), 15,32% Sedang (Pekandangan, Banjarkulon dan Sijeruk), 14,02% Rendah (Majatengah, Gipit, dan Prendengan). Implikasi hasil penelitian ini adalah sebagai dasar pertimbangan kebijakan untuk mitigasi bencana longsor untuk meminimalkan risiko dan kerugian yang ditimbulkan. Salah satu fungsi indeks kerentanan bencana adalah menjadi peringatan (warning) dan bahan pertimbangan dalam pengambilan kebijakan dan tindakan penanganan bencana. Setiap daerah mempunyai indeks kerentanan yang berbeda satu dengan yang lainnya. Masyarakat dengan kerentanan bencana yang tinggi dengan masyarakat kerentanan yang rendah diharapkan diperlakukan secara berbeda dalam penanganan tergantung pada tingkatan resikonya terhadap bencana tersebut. Oleh sebab itu masyarakat yang tinggal pada daerah dengan nilai kerentanan yang tinggi maka perlu meningkatkan kesiapsiagaan yang lebih tinggi terhadap terjadinya bencana longsor.


Author(s):  
Fumiso Muyambo ◽  
Andries J. Jordaan ◽  
Yonas T. Bahta

The aim of this article was to assess and identify social vulnerability of communal farmers to drought in the O.R. Tambo district in the Eastern Cape province of South Africa using a survey data and social vulnerability index (SoVI). Eleven social vulnerability indicators were identified using Bogardi, Birkman and Cardona conceptual framework. The result found that an SoVI estimated for O.R. Tambo district was very high with a Likert scale of 5 for cultural values and practices, security or safety, social networks, social dependence, preparedness strategies and psychological stress attributed for the high value of social vulnerability to drought. Indigenous knowledge and education had an SoVI value of 2, which was of low vulnerability, contributing positively to resilience to drought. The study also found that government involvement in drought risk reduction is limited; as a result, the study recommends that a national, provincial and district municipalities policy on drought risk reduction and mitigation should be developed.


2020 ◽  
Vol 20 (7) ◽  
pp. 2067-2090 ◽  
Author(s):  
Mark Bawa Malgwi ◽  
Sven Fuchs ◽  
Margreth Keiler

Abstract. The use of different methods for physical flood vulnerability assessment has evolved over time, from traditional single-parameter stage–damage curves to multi-parameter approaches such as multivariate or indicator-based models. However, despite the extensive implementation of these models in flood risk assessment globally, a considerable gap remains in their applicability to data-scarce regions. Considering that these regions are mostly areas with a limited capacity to cope with disasters, there is an essential need for assessing the physical vulnerability of the built environment and contributing to an improvement of flood risk reduction. To close this gap, we propose linking approaches with reduced data requirements, such as vulnerability indicators (integrating major damage drivers) and damage grades (integrating frequently observed damage patterns). First, we present a review of current studies of physical vulnerability indicators and flood damage models comprised of stage–damage curves and the multivariate methods that have been applied to predict damage grades. Second, we propose a new conceptual framework for assessing the physical vulnerability of buildings exposed to flood hazards that has been specifically tailored for use in data-scarce regions. This framework is operationalized in three steps: (i) developing a vulnerability index, (ii) identifying regional damage grades, and (iii) linking resulting index classes with damage patterns, utilizing a synthetic “what-if” analysis. The new framework is a first step for enhancing flood damage prediction to support risk reduction in data-scarce regions. It addresses selected gaps in the literature by extending the application of the vulnerability index for damage grade prediction through the use of a synthetic multi-parameter approach. The framework can be adapted to different data-scarce regions and allows for integrating possible modifications to damage drivers and damage grades.


Sign in / Sign up

Export Citation Format

Share Document