EFFECT OF BEACH NOURISHMENT ON HOT SPRING GROUNDWATER ENVIRONMENT IN IBUSUKI PORT COAST

Author(s):  
Kenki KASAMO ◽  
Takatomo MIYAKE ◽  
Nobuyuki ONO ◽  
Kei GENPEI ◽  
Kotone Ota ◽  
...  
Water ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 3111
Author(s):  
Pengtao Yang ◽  
Xiaolong Sun ◽  
Dongying Liu ◽  
Zhongtai He ◽  
Yongsheng Li

Groundwater is undoubtedly important for water security and eco-environmental protection, especially in areas that experience earthquakes. Analyzing the characteristics and variation of groundwater after an earthquake is significant to obtain a better understanding of the seismic risk and rational management of groundwater resources. This study investigated the hydrogeochemical characteristics of groundwater at the epicenter of the 2021 Biru M6.1 earthquake in central Tibet, southwest China, using 23 water samples. The results showed that: (1) the hydrochemical type, hydrogen and oxygen isotope ratios, and SiO2 concentrations of three hot spring water samples in the study area were significantly different from those of samples taken elsewhere, indicating that the hot spring water originates from deeper geothermal reservoirs and has undergone more distant migration and longer fractionation processes; (2) the geochemical characteristics of groundwater from some sampling sites in the epicentral area were apparently distinct from those of other shallow groundwater or surface water samples, suggesting that the groundwater environment in the epicentral area has been affected by the earthquake. Along with the macroscopic groundwater responses in the epicentral area after the earthquake, we investigated the influencing mechanisms of the earthquake on the regional groundwater environment. We conclude that a shorter distance from the epicenter to the seismogenic fault leads to a greater possibility of the generation of new fractures, which then induce macroscopic responses and chemical characteristic variations for groundwater.


Author(s):  
Takatomo MIYAKE ◽  
Nobuyuki ONO ◽  
Kenki KASAMO ◽  
Shohei NAKAMURA ◽  
Takaya FUJIWARA ◽  
...  

1996 ◽  
Vol 451 ◽  
Author(s):  
Guen Nakayama ◽  
Yuichi Fukaya ◽  
Masatsune Akashi

ABSTRACTIn the scheme for geological disposal of high level radioactive nuclear wastes, the burial pit is to be isolated from the sphere of human life by a multiple-barrier system, which consists of an artificial barrier, composed of a canister, an overpack and a bentonite cushioning layer, and a natural barrier, which is essentially the bedrock. As the greatest as well as essentially the sole detriment to its integrity would be corrosion by groundwater. The groundwater comes to it seeping through the bentonite zone, thereby attaining conceivably the pH of transition from general corrosion to passivity, pHd, the behaviors of mild steel in such a groundwater environment have been examined. It has been shown that the pHd is lowered (enlargement of the passivity domain) with rising temperature and carbonate-bicarbonate concentration, while it is raised (enlargement of the general corrosion region) with increasing concentrations of chloride and sulfate ions.


2018 ◽  
Vol 7 (3) ◽  
Author(s):  
Budiasih Wahyuntari., dkk

Isolate I-5 was isolated from Ciseeng hot spring, West Java and was identified as Bacillus licheniformis I-5. The isolate produces extracellular xylanolytic enzymes on Oatspelt containing Luria broth agar medium. Optimal activity of the crude enzyme was  observed at 50ºC and pH 7. The effect of sodium dodecyl sulphate, b-mercaptoethanol and Triton-X100 were observed. Incubating the crude enzyme in 1.5% SDS and 1.5% b-mercaptoethanol at 50oC for 90 minutes then adding Triton-X100 at final concentration of 3.5% for 45 minutes only reduced 5.75% of the initial enzyme activity. SDS/PAGE and zymogram analysis showed that at least two xylanolytic enzymes presence in the crude enzyme. The molecular weight of the enzyme was estimated about 127 and 20kD. The enzyme hydrolysed xylan into xylobiose, xylotriose and other longer xylooligosaccharides. Thermal stability of the crude enzyme was observed at 50, 60, and 70oC and pH 7 and 8. The results showed that the half time of the crude enzyme incubated at 50, 60, and 70oC pH 7 was 2 hours 55 minutes; 2 hours 33 minutes and 1 hour 15 minutes respectively. The half time at 50, 60 and 70oC, pH 8 was 2 hours 48 minutes; 1 hour 22 minutes and 1 hour 9 minutes respectively.keywords: Xilanase, Bacillus licheniformis I-5, thermal stability


Sign in / Sign up

Export Citation Format

Share Document