scholarly journals Water Quality Model for Distribution Systems by Neural Networks.

1999 ◽  
Vol 27 ◽  
pp. 593-600
Author(s):  
Toyono INAKAZU ◽  
Shin OBATA ◽  
Akira KOIZUMI ◽  
Yasuyuki SAKAKIBARA
2015 ◽  
Vol 42 (4) ◽  
pp. 250-258 ◽  
Author(s):  
Megan J. Liu ◽  
Stephen Craik ◽  
David Z. Zhu

Predicting disinfectant concentrations in water distribution systems using water quality models requires the input of the wall decay coefficient of the disinfectant. In this study, field water sampling data was integrated with network hydraulic and water quality model simulations of a section of the municipal water distribution system in the City of Edmonton, composed of predominantly cast iron piping, to determine a wall decay coefficient for combined chlorine (chloramine). Unique combined chlorine wall decay coefficients that provided the best fit of model-predicted chlorine concentrations to the field data were determined at two temperatures. Using the determined wall decay coefficients, the water quality model can be used to predict combined chlorine concentrations.


2015 ◽  
Vol 5 (3) ◽  
pp. 360-371
Author(s):  
Shun Li ◽  
Fu Sun ◽  
Siyu Zeng ◽  
Xin Dong ◽  
Pengfei Du

With the rapid development of a centralized wastewater reuse scheme in China, water quality concerns arise considering the long-distance transport of reclaimed water in distribution systems from wastewater treatment plants to points of use. To this end, a multi-species water quality model for reclaimed water distribution systems (RWDSs) was developed and validated against the data from part of a full-scale RWDS in Beijing. The model could simulate organics, ammonia nitrogen, residual chlorine, inert particles, and six microbial species, i.e. fecal coliforms, Enterococcus spp., Salmonella spp., Mycobacterium spp., and other heterotrophic and autotrophic bacteria, in both the bulk liquid and the biofilm. Altogether, 56 reaction processes were involved, and 37 model parameters and seven initial values were identified. Despite the limited monitoring data and the associated gross uncertainty, the model could simulate the reclaimed water quality in the RWDS with acceptable accuracy. Regional sensitivity analysis suggested that the model had a balanced structure with a large proportion of sensitive parameters, and the sensitivity of model parameters could be reasonably interpreted by current knowledge or observation. Furthermore, the most sensitive model parameters could generally be well identified with uncertainties significantly reduced, which also favored the trustworthiness of the model. Finally, future plans to improve and apply the model were also discussed.


Author(s):  
Soobin Kim ◽  
Yong Sung Kwon ◽  
JongChel Pyo ◽  
Mayzonee Ligaray ◽  
Joong-Hyuk Min ◽  
...  

2021 ◽  
Vol 193 (1) ◽  
Author(s):  
Cássia Monteiro da Silva Burigato Costa ◽  
Izabel Rodrigues Leite ◽  
Aleska Kaufmann Almeida ◽  
Isabel Kaufmann de Almeida

2021 ◽  
Vol 13 (1) ◽  
pp. 454-468
Author(s):  
Yumeng Song ◽  
Jing Zhang

Abstract We integrated hyperspectral and field-measured chlorophyll-a (Chl-a) data from the Kristalbad constructed wetland in the Netherlands. We developed a best-fit band ratio empirical algorithm to generate a distribution map of Chl-a concentration (C chla) from SPOT 6 imagery. The C chla retrieved from remote sensing was compared with a water quality model established for a wetland pond system. The retrieved satellite results were combined with a water quality model to simulate and predict the changes in phytoplankton levels. The regression model provides good retrievals for Chl-a. The imagery-derived C chla performed well in calibrating the simulation results. For each pond, the modeled C chla showed a range of values similar to the Chl-a data derived from SPOT 6 imagery (10–25 mg m−3). The imagery-derived and prediction model results could be used as the guiding analytical tools to provide information covering an entire study area and to inform policies.


Water ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 88
Author(s):  
Xiamei Man ◽  
Chengwang Lei ◽  
Cayelan C. Carey ◽  
John C. Little

Many researchers use one-dimensional (1-D) and three-dimensional (3-D) coupled hydrodynamic and water-quality models to simulate water quality dynamics, but direct comparison of their relative performance is rare. Such comparisons may quantify their relative advantages, which can inform best practices. In this study, we compare two 1-year simulations in a shallow, eutrophic, managed reservoir using a community-developed 1-D model and a 3-D model coupled with the same water-quality model library based on multiple evaluation criteria. In addition, a verified bubble plume model is coupled with the 1-D and 3-D models to simulate the water temperature in four epilimnion mixing periods to further quantify the relative performance of the 1-D and 3-D models. Based on the present investigation, adopting a 1-D water-quality model to calibrate a 3-D model is time-efficient and can produce reasonable results; 3-D models are recommended for simulating thermal stratification and management interventions, whereas 1-D models may be more appropriate for simpler model setups, especially if field data needed for 3-D modeling are lacking.


Sign in / Sign up

Export Citation Format

Share Document