High-b-Value Diffusion-Weighted Imaging at 3 T to Detect Prostate Cancer: Comparisons Between b Values of 1,000 and 2,000 s/mm2

2010 ◽  
Vol 194 (1) ◽  
pp. W33-W37 ◽  
Author(s):  
Chan Kyo Kim ◽  
Byung Kwan Park ◽  
Bohyun Kim



2014 ◽  
Vol 40 (3) ◽  
pp. 578-586 ◽  
Author(s):  
Kinzya B. Grant ◽  
Harsh K. Agarwal ◽  
Joanna H. Shih ◽  
Marcelino Bernardo ◽  
Yuxi Pang ◽  
...  


2021 ◽  
Vol 10 (16) ◽  
pp. 3451
Author(s):  
Nils C. Nuessle ◽  
Felix Behling ◽  
Ghazaleh Tabatabai ◽  
Salvador Castaneda Vega ◽  
Jens Schittenhelm ◽  
...  

Purpose: To investigate the diagnostic performance of in vivo ADC-based stratification of integrated molecular glioma grades. Materials and methods: Ninety-seven patients with histopathologically confirmed glioma were evaluated retrospectively. All patients underwent pre-interventional MRI-examination including diffusion-weighted imaging (DWI) with implemented b-values of 500, 1000, 1500, 2000, and 2500 s/mm2. Apparent Diffusion Coefficient (ADC), Mean Kurtosis (MK), and Mean Diffusivity (MD) maps were generated. The average values were compared among the molecular glioma subgroups of IDH-mutant and IDH-wildtype astrocytoma, and 1p/19q-codeleted oligodendroglioma. One-way ANOVA with post-hoc Games-Howell correction compared average ADC, MD, and MK values between molecular glioma groups. A Receiver Operating Characteristic (ROC) analysis determined the area under the curve (AUC). Results: Two b-value-dependent ADC-based evaluations presented statistically significant differences between the three molecular glioma sub-groups (p < 0.001, respectively). Conclusions: High-b-value ADC from preoperative DWI may be used to stratify integrated molecular glioma subgroups and save time compared to diffusion kurtosis imaging. Higher b-values of up to 2500 s/mm2 may present an important step towards increasing diagnostic accuracy compared to standard DWI protocol.



Sensors ◽  
2020 ◽  
Vol 20 (5) ◽  
pp. 1539 ◽  
Author(s):  
Chris Dulhanty ◽  
Linda Wang ◽  
Maria Cheng ◽  
Hayden Gunraj ◽  
Farzad Khalvati ◽  
...  

Prostate cancer is the most commonly diagnosed cancer in North American men; however, prognosis is relatively good given early diagnosis. This motivates the need for fast and reliable prostate cancer sensing. Diffusion weighted imaging (DWI) has gained traction in recent years as a fast non-invasive approach to cancer sensing. The most commonly used DWI sensing modality currently is apparent diffusion coefficient (ADC) imaging, with the recently introduced computed high-b value diffusion weighted imaging (CHB-DWI) showing considerable promise for cancer sensing. In this study, we investigate the efficacy of ADC and CHB-DWI sensing modalities when applied to zone-level prostate cancer sensing by introducing several radiomics driven zone-level prostate cancer sensing strategies geared around hand-engineered radiomic sequences from DWI sensing (which we term as Zone-X sensing strategies). Furthermore, we also propose Zone-DR, a discovery radiomics approach based on zone-level deep radiomic sequencer discovery that discover radiomic sequences directly for radiomics driven sensing. Experimental results using 12,466 pathology-verified zones obtained through the different DWI sensing modalities of 101 patients showed that: (i) the introduced Zone-X and Zone-DR radiomics driven sensing strategies significantly outperformed the traditional clinical heuristics driven strategy in terms of AUC, (ii) the introduced Zone-DR and Zone-SVM strategies achieved the highest sensitivity and specificity, respectively for ADC amongst the tested radiomics driven strategies, (iii) the introduced Zone-DR and Zone-LR strategies achieved the highest sensitivities for CHB-DWI amongst the tested radiomics driven strategies, and (iv) the introduced Zone-DR, Zone-LR, and Zone-SVM strategies achieved the highest specificities for CHB-DWI amongst the tested radiomics driven strategies. Furthermore, the results showed that the trade-off between sensitivity and specificity can be optimized based on the particular clinical scenario we wish to employ radiomic driven DWI prostate cancer sensing strategies for, such as clinical screening versus surgical planning. Finally, we investigate the critical regions within sensing data that led to a given radiomic sequence generated by a Zone-DR sequencer using an explainability method to get a deeper understanding on the biomarkers important for zone-level cancer sensing.



2021 ◽  
Vol 10 (22) ◽  
pp. 5289
Author(s):  
Maxime Ablefoni ◽  
Hans Surup ◽  
Constantin Ehrengut ◽  
Aaron Schindler ◽  
Daniel Seehofer ◽  
...  

Diffusion-weighted imaging (DWI) has rapidly become an essential tool for the detection of malignant liver lesions. The aim of this study was to investigate the usefulness of high b-value computed DWI (c-DWI) in comparison to standard DWI in patients with hepatic metastases. In total, 92 patients with histopathologic confirmed primary tumors with hepatic metastasis were retrospectively analyzed by two readers. DWI was obtained with b-values of 50, 400 and 800 or 1000 s/mm2 on a 1.5 T magnetic resonance imaging (MRI) scanner. C-DWI was calculated with a monoexponential model with high b-values of 1000, 2000, 3000, 4000 and 5000 s/mm2. All c-DWI images with high b-values were compared to the acquired DWI sequence at a b-value of 800 or 1000 s/mm2 in terms of volume, lesion detectability and image quality. In the group of a b-value of 800 from a b-value of 2000 s/mm2, hepatic lesion sizes were significantly smaller than on acquired DWI (metastases lesion sizes b = 800 vs. b 2000 s/mm2: mean 25 cm3 (range 10–60 cm3) vs. mean 17.5 cm3 (range 5–35 cm3), p < 0.01). In the second group at a high b-value of 1500 s/mm2, liver metastases were larger than on c-DWI at higher b-values (b = 1500 vs. b 2000 s/mm2, mean 10 cm3 (range 4–24 cm3) vs. mean 9 cm3 (range 5–19 cm3), p < 0.01). In both groups, there was a clear reduction in lesion detectability at b = 2000 s/mm2, with hepatic metastases being less visible compared to c-DWI images at b = 1500 s/mm2 in at least 80% of all patients. Image quality dropped significantly starting from c-DWI at b = 3000 s/mm2. In both groups, almost all high b-values images at b = 4000 s/mm2 and 5000 s/mm2 were not diagnostic due to poor image quality. High c-DWI b-values up to b = 1500 s/mm2 offer comparable detectability for hepatic metastases compared to standard DWI. Higher b-value images over 2000 s/mm2 lead to a noticeable reduction in imaging quality, which could hamper diagnosis.



2015 ◽  
Vol 18 (2) ◽  
pp. 155-160 ◽  
Author(s):  
S Feuerlein ◽  
M S Davenport ◽  
A Krishnaraj ◽  
E M Merkle ◽  
R T Gupta


2016 ◽  
Vol 41 (5) ◽  
pp. 934-945 ◽  
Author(s):  
Sadhna Verma ◽  
Saradwata Sarkar ◽  
Jason Young ◽  
Rajesh Venkataraman ◽  
Xu Yang ◽  
...  


2016 ◽  
Vol 23 (6) ◽  
pp. 704-711 ◽  
Author(s):  
Andrew B. Rosenkrantz ◽  
Nainesh Parikh ◽  
Andrea S. Kierans ◽  
Max Xiangtian Kong ◽  
James S. Babb ◽  
...  


Sign in / Sign up

Export Citation Format

Share Document