scholarly journals MR imaging of the brain: comparison of gradient-echo and spin-echo pulse sequences.

1995 ◽  
Vol 165 (4) ◽  
pp. 959-962 ◽  
Author(s):  
M H Pui ◽  
E C Fok
2002 ◽  
Vol 43 (5) ◽  
pp. 464-473
Author(s):  
M. Alemany Ripoll ◽  
R. Raininko

Purpose: To compare the detectability of small experimental intracranial haemorrhages on MR imaging at 0.5 T and 1.5 T, from hyperacute to subacute stages. Material and Methods: 1 ml of autologous blood was injected into the brain of 15 rabbits to create intraparenchymal haematomas. Since the blood partially escaped into the cerebrospinal fluid (CSF) spaces, detectability of subarachnoid and intraventricular blood was also evaluated. MR imaging at 0.5 T and at 1.5 T was repeated up to 14 days, including T1-, proton density- and T2-weighted (w) spin-echo (SE), FLAIR and T2*-w gradient echo (GE) pulse sequences. The last MR investigation was compared to the formalin-fixed brain sections in 7 animals. Results: The intraparenchymal haematomas were best revealed with T2*-w GE sequences, with 100% of sensitivity at 1.5 T and 90–95% at 0.5 T. Blood in the CSF spaces was significantly ( p < 0.05) better detected at 1.5 T with T2*-w GE sequences and detected best during the first 2 days. The next most sensitive sequence for intracranial blood was FLAIR. SE sequences were rather insensitive. Conclusion: 1.5 T equipment is superior to 0.5 T in the detection of intracranial haemorrhages from acute to subacute stages. T2*-w GE sequences account for this result but other sequences are also needed for a complete examination.


Radiology ◽  
1995 ◽  
Vol 194 (2) ◽  
pp. 431-437 ◽  
Author(s):  
J N Rydberg ◽  
D J Lomas ◽  
K J Coakley ◽  
D M Hough ◽  
R L Ehman ◽  
...  

1995 ◽  
Vol 5 (5) ◽  
pp. 566-570 ◽  
Author(s):  
Lawrence H. Schwartz ◽  
Steven E. Seltzer ◽  
Clare M. C. Tempany ◽  
Stuart G. Silverman ◽  
David R. Piwnica-Worms ◽  
...  

2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
John Ford ◽  
Nesrin Dogan ◽  
Lori Young ◽  
Fei Yang

Objectives. Radiomic features extracted from diverse MRI modalities have been investigated regarding their predictive and/or prognostic value in a variety of cancers. With the aid of a 3D realistic digital MRI phantom of the brain, the aim of this study was to examine the impact of pulse sequence parameter selection on MRI-based textural parameters of the brain. Methods. MR images of the employed digital phantom were realized with SimuBloch, a simulation package made for fast generation of image sequences based on the Bloch equations. Pulse sequences being investigated consisted of spin echo (SE), gradient echo (GRE), spoiled gradient echo (SP-GRE), inversion recovery spin echo (IR-SE), and inversion recovery gradient echo (IR-GRE). Twenty-nine radiomic textural features related, respectively, to gray-level intensity histograms (GLIH), cooccurrence matrices (GLCOM), zone size matrices (GLZSM), and neighborhood difference matrices (GLNDM) were evaluated for the obtained MR realizations, and differences were identified. Results. It was found that radiomic features vary considerably among images generated by the five different T1-weighted pulse sequences, and the deviations from those measured on the T1 map vary among features, from a few percent to over 100%. Radiomic features extracted from T1-weighted spin-echo images with TR varying from 360 ms to 620 ms and TE = 3.4 ms showed coefficients of variation (CV) up to 45%, while up to 70%, for T2-weighted spin-echo images with TE varying over the range 60–120 ms and TR = 6400 ms. Conclusion. Variability of radiologic textural appearance on MR realizations with respect to the choice of pulse sequence and imaging parameters is feature-dependent and can be substantial. It calls for caution in employing MRI-derived radiomic features especially when pooling imaging data from multiple institutions with intention of correlating with clinical endpoints.


Sign in / Sign up

Export Citation Format

Share Document