scholarly journals SYNTHESIS AND ANTICONVULSANT ACTIVITY (CHEMO SHOCK) OF N-1(SUBSTITUTED-N-4[(4-OXO-3-PHENYL-3, 4-DIHYDRO-QUINAZOLINE-2-YLMETHYL) SEMICARBAZONES

Author(s):  
Meena K Yadav ◽  
Laxmi Tripathi ◽  
Diptendu Goswami

Objective: This work is designed at finding new structure leads with potential anticonvulsant activities of 4(3H)-quinazolinone pharmacophore scaffold.Methods: A new series of 4(3H)-quinazolinone pharmacophore was designed with substituted moieties possesses different electronic environment in the hope of developing potent and safe new effective compounds. In such fashion, in this paper, we report the synthesis and anticonvulsant activity (Chemo shock) of N-1(substituted-N-4[(4-oxo-3-phenyl-3, 4-dihydro-quinazoline-2-ylmethyl) semicarbazones 3A-d (1-7), 3B-d (1-7), 3C-d (1-7), their chemical structure were characterized using IR,  H-H NMR, and elemental analysis techniques. Their anticonvulsant activity was evaluated using chemicals strychnine, thiosemicarbazide and 4-aminopyridine induced seizure models at a dose of 30, 100, 300 mg/kg unto 2 hrs tests in mice. The rotarod assay was performed in mice to evaluate the neurotoxicity of the compounds. 1Results: Compounds 3C (d-4), 3B (d-4), and 3A (d-4) were observed to be most feasible to act against glutamate receptor for anticonvulsant activity.Conclusions: The results obtained revealed that numbers of novel quinazolinone semicarbazone derivatives are effective in chemical to induce (chemo shock) model and showing good anticonvulsant activity.Keywords: Quinazolinone, Semicarbazones, Strychnine, Thiosemicarbazide, 4-aminopyridine, Anticonvulsant activity, Chemo shock.

2011 ◽  
Vol 8 (s1) ◽  
pp. S47-S52 ◽  
Author(s):  
Abhijit Kadam ◽  
Sampada Jangam ◽  
Rajesh Oswal

Phenytoin (5,5'-dipenylimidazolidine-2,4-dione) is the prime example of anticonvulsant agent. According to reported procedure, it is synthesized by condensation of benzil and urea in presence of base (30% w/v NaOH) using ethanol as solvent which itself acts as CNS stimulant. Removal of solvent after synthesis is most difficult and non-assured process. In case of phenytoin transformation in polymorphism plays an important role when solvent other than water is used. About 30% extra cost is calculated if solvent other than water is used. Therefore by application of green chemistry principle phenytoin was synthesized by condensation of benzil and urea in presence of base (30% NaOH) and water as green solvent. This compound was characterized on the basis of its spectral (IR,1H NMR) data and evaluated for anticonvulsant activity using MES induced and PTZ induced seizure models in Swiss albino mice. Significant anticonvulsant activity was found by using 25 mg/kg and 50 mg/kg of phenytoin compared with standard phenytoin at 25 mg/kg dose.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Mohamed Alswah ◽  
Adel Ghiaty ◽  
Ahmed El-Morsy ◽  
Kamal El-Gamal

2-([1,2,4]Triazolo[4,3-a]quinoxalin-4-ylthio)acetic acid hydrazide (10) was used as a precursor for the syntheses of novel quinoxaline derivatives with potential anticonvulsant properties. The newly synthesized compounds have been characterized by IR, 1H NMR, and mass spectral data followed by elemental analysis. The anticonvulsant evaluation was carried out for eleven of the synthesized compounds using metrazol induced convulsions model and phenobarbitone sodium as a standard. Among this set of tested compounds, two of them (14, and 15b) showed the best anticonvulsant activities.


2020 ◽  
Vol 17 (2) ◽  
pp. 199-213
Author(s):  
Nimisha Jain ◽  
Pradeep Kumar Singour

Background: According to WHO, the 50 million people worldwide are suffering from epilepsy, making it one of the most common neurological diseases globally. Epilepsy is often characterized by neurobiological, cognitive, psychological and behavioral changes and that may enhance the susceptibility to seizures and affect the quality of life. Objective: The aim of the present work was to develop 2, 3 disubstituted 4-(3H)-quinazolinone derivatives in order to find an effective and highly lipophilic compound with lesser side effects and to evaluate them for anticonvulsant and neurotoxic activity. Methods: A novel series of 3-4-[2-amino-4-(substitutedphenyl)-2H-[1.3] oxazin/thiazin-6-yl 2- phenyl-3H-quinazolin-4-one derivatives were synthesized and evaluated for their anticonvulsant activity. The structures of the compound have been confirmed by spectral analysis. The molecular docking study was performed for finding the binding affinity with GABAA receptor in order to rationalize their anticonvulsant activities in a qualitative way. Quantitative estimate of drug-likeness was also performed which calculate the molecular properties and screen the molecules based on drug-likeness rules. Anticonvulsant activities of synthesized compounds were done by using (Maximal electroshock) MES induced seizures and subcutaneous pentylenetetrazole (scPTZ) induced seizure models in Wistar rats of either sex. None of the compounds demonstrated any sign of neurotoxicity. Results: Compounds 3-4-[2-amino-4-(fluorophenyl)-2H- [1, 3] oxazin-6-yl 2-phenyl-3H quinazolin-4-one (5i) and 3-4-[2-amino-4-(fluorophenyl)-2H- [1, 3] thiazin -6-yl 2-phenyl-3H quinazolin-4-one (5n) have shown significant activity against tonic seizure by the MES model and clonic seizure by scPTZ induced seizure model. Conclusion: These ten novels synthesized compounds had significant anticonvulsant activity. As a result, the compound (5i) and (5n) emerged out as the pilot molecule with a better anticonvulsant activity without any neurotoxicity, while the other compounds have moderate activity. QED analysis of compounds (5i) and (5n) also indicated that these compounds will have good oral absorption. The proposed work is to make efforts towards the development and identification of novel molecules as anticonvulsant agents by the synthesis of some novel quinazolinone derivatives with improved biological activity.


2020 ◽  
Vol 17 (5) ◽  
pp. 393-402
Author(s):  
Figueroa-Valverde Lauro ◽  
Rosas-Nexticapa Marcela ◽  
Lopez-Ramos Maria ◽  
Diaz Cedillo Francisco ◽  
Mateu-Armand Virginia ◽  
...  

There are several protocols for the preparation of bicyclic derivatives; however, some methods use dangerous and require special conditions. The aim of this study was to synthesize a new Dioxaspiro[ bicyclo[3.3.1]nonane-oxabicyclo[6.2.0]-deca-1(10), 8-dien-4-one (compound 8). Compound 8 was prepared using some reactions such as; i) etherification, ii) reduction, iii) amidation, iv) imination and v) 2+2 addition. The chemical structure of 8 and its intermediaries were completely characterized by spectroscopic techniques and elemental analysis. The synthesis showed a yield of 85% for compound 8. In this study, an easy method for the preparation of compound 8 is reported.


2019 ◽  
Vol 19 (1) ◽  
pp. 31-45
Author(s):  
Meena K. Yadav ◽  
Laxmi Tripathi

Background: N-{[3-(4-chlorophenyl)-4-oxo-3, 4-dihydroquinazolin-2-yl] methyl}, 2-[(2- isopropyl-5-methyl) 1-cyclohexylidene] hydrazinecarboxamide QS11 was designed by computational study. It possessed essential pharmacophoric features for anticonvulsant activity and showed good docking with iGluRs (Kainate) glutamate receptor. Methods: QSAR and ADMET screening results suggested that QS11 would possess good potency for anticonvulsant activity. QS11 was synthesised and evaluated for its anticonvulsant activity and neurotoxicity. QS11 showed protection in strychnine, thiosemicarbazide, 4-aminopyridine and scPTZ induced seizure models and MES seizure model. QS11 showed higher ED50, TD50 and PI values as compared to the standard drugs in both MES and scPTZ screen. A high safety profile (HD50/ED50 values) was noted and hypnosis, analgesia, and anaesthesia were only observed at higher doses. No considerable increase or decrease in the concentration of liver enzymes was observed. Optimized QS11 was subjected to preclinical (in-vivo) studies and the pharmacokinetic performance of the sample was investigated. The result revealed that the pharmacokinetic performance of QS11 achieved maximum plasma concentrations (Cmax) of 0.315 ± 0.011 µg/mL at Tmax of 2.0 ± 0.13 h, area under the curve (AUC0-∞) value 4.591 ± 0.163 µg/ml x h, elimination half-life (T1/2) 6.28 ± 0.71 h and elimination rate constant was found 0.110 ± 0.013 h-1. Results and Conclusion: Above evidences indicate that QS11 could serve as a lead for development of new antiepileptic drugs.


2018 ◽  
Vol 17 (6) ◽  
pp. 448-457 ◽  
Author(s):  
Xia Huang ◽  
Tie Chen ◽  
Rong-Bi Han ◽  
Feng-Yu Piao

Background & Objective: A series of novel 3-Substituted-1,3,4,5-Tetrahydro-2H-benzo [b] azepine-2-one Derivatives (4, 5, 7, 10, 12, 5a-j, 8a-e) were synthesized from 1,2,3,4-Tetrahydro-1- naphthalenone. The structures of these compounds were confirmed by IR, 1H NMR, 13C NMR, MASS spectra and elemental analysis. Their anticonvulsant activity was evaluated by the maximal electroshock (MES) test, subcutaneous pentylenetetrazol (scPTZ) test, and their neurotoxicity was evaluated by the rotarod neurotoxicity test. Compound 4 showed the maximum anticonvulsant activity against the maximal electroshock test (ED50=26.4, PI =3.2) and against the subcutaneous pentylenetetrazol test (ED50=40.2, PI =2.1). Conclusion: Possible structure-activity relationship was discussed.


1995 ◽  
Vol 60 (7) ◽  
pp. 1236-1241 ◽  
Author(s):  
Martin Doležal ◽  
Jiří Hartl ◽  
Antonín Lyčka ◽  
Vladimír Buchta ◽  
Želmíra Odlerová

Nucleophilic substitution of 3-chloro-5-cyano-2-pyrazinecarboxamide by substituted anilines afforded substituted 3-arylamino-5-cyano-2-pyrazinecarboxamides I-X. The structures of compounds were confirmed by elemental analysis, UV, IR and 1H NMR spectra. The assessment of in vitro antimycotic and antimycobacterial activities of the compounds was carried out. The highest antituberculotic activity against M. tuberculosis in this series was shown by 3-anilino- 5-cyano-2-pyrazinecarboxamide (I), whose efficacy was the same as that of pyrazinecarboxamide.


1997 ◽  
Vol 755 (2) ◽  
pp. 202-212 ◽  
Author(s):  
Abdul-Salam Abdul-Ghani ◽  
Philip J.E Attwell ◽  
Natasha Singh Kent ◽  
Henry F Bradford ◽  
Martin J Croucher ◽  
...  

1971 ◽  
Vol 26 (7) ◽  
pp. 679-683 ◽  
Author(s):  
Herbert W. Roesky ◽  
Enno Janssen

P3N3F5NCO was prepared by reaction of P3N3F5NSO with (COCl) 2. Substituted amides were obtained from the reaction of P3N3F5NSO with carbonic acids e. g. P3N3F5NHCOCH3, P3N3F5NHCOC2H5, and P3N3F5NHCOC3H7. If these substances were treated with PCl5 the following compounds P3N3F5N = CClCH3, P3N3F5N = CClCH5, and P3N3F5TN = CClC3H7 were formed. They reacted with nucleophiles to give P3N3F5N = CNH2CH3, P3N3F5N = TN (CH3) 2C2H5, and P3N3F5N = CN (CH3) 2CH7. The properties of these compounds are described. They were characterized by elemental analysis and IR-spectra. 19F-, 1H-NMR, and mass spectra are reported.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Lakhdar Sibous ◽  
Embarek Bentouhami ◽  
Mustayeen Ahmed Khan

4,4′-Diaminobiphenyl reacts with 2,4-pentanedione in absolute ethanol in a molar ratio 1 : 2 to form mainly the product of [1 + 2] condensation, 4,4′-(biphenyl-4,4′-diyldinitrilo)dipentan-2-one (H2L). The Schiff base was used as tetradentate chelating ligand to coordinate CoII and NiII chlorides leading to complexes where the ratio of metal ligand was found to be 2 : 1 or 2 : 2. All the synthesized products were characterized by elemental analysis, infrared, electronic, and mass spectroscopy, 1H NMR, and DSC. The electrochemical behaviour of the ligand and its complexes in DMF is also investigated.


Sign in / Sign up

Export Citation Format

Share Document