scholarly journals PRONIOSOMAL GEL MEDIATED TRANSDERMAL DELIVERY OF GLIBENCLAMIDE AND ATENOLOL COMBINATION: EXVIVO AND PHARMACODYNAMIC STUDIES

Author(s):  
P. ANITHA ◽  
S. V. SATYANARAYANA

Objective: The objective of the present work was to develop an optimized dosage form for treating comorbidity in combination and evaluate it for its pharmacodynamic performance in male Wistar albino rats. Methods: Transdermal proniosomal gel for Combination of Glibenclamide (GLB) and Atenolol (ATN) was developed and optimized by Box Behnken design. This optimized combinational proniosomal gel (OCPG), which was selected by a point prediction method, was evaluated for its ex vivo, skin irritation studies and pharmacodynamic activities of both drugs in rats in comparison with its oral therapy. Results: The ex-vivo permeation behavior through different skins was studied and the findings were also confirmed by the values of the steady-state flux (Jss). The OCPG observed an increase of more than twice in the cumulative amount of impregnated drugs compared to pure drug films. The study on skin irritation revealed the non-irritability of the developed OCPG applied. OCPG significantly showed sustained hypoglycemic activity in rats (p<0.001), when compared to orally treat animals up to 24 h. Systolic blood pressure (SBP) lowering effect of OCPG was found to be significant (p<0.02), when compared to orally treat rats up to 24 h. However, the reduction was slow and sustained in the case of OPCG where a significant response was observed in the performed studies. Conclusion: Overall, the results show that controlled release GLB and ATN proniosomes offer a useful and promising transdermal delivery system. Henceforth this may be an achievement in treating the diabetic hypertensive patient.

1999 ◽  
Vol 179 (1) ◽  
pp. 129-134 ◽  
Author(s):  
Jagdish Jaiswal ◽  
Ramarao Poduri ◽  
Ramesh Panchagnula

2017 ◽  
Vol 38 ◽  
pp. 59-71 ◽  
Author(s):  
Biswarup Das ◽  
Suma Oomen Sen ◽  
Ruma Maji ◽  
Amit Kumar Nayak ◽  
Kalyan Kumar Sen

2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Saeed Ebrahimi ◽  
Reza Mahjub ◽  
Rasool Haddadi ◽  
Seyed Yaser Vafaei

Cationic nanocapsules represent a promising approach for topical delivery purposes. We elaborated on a novel formulation based on the cationic nanocapsules to enhance the pharmacodynamic efficacy, user compliance, and photostability of tretinoin (TTN). To achieve this goal, TTN nanocapsules were prepared by the nanoprecipitation method. In order to statistically optimize formulation variables, a Box-Behnken design, using Design-Expert software, was employed. Three independent variables were evaluated: total weight of the cationic acrylic polymer ( X 1 ), oil volume ( X 2 ), and TTN amount ( X 3 ). The particle size and encapsulation efficiency percent (EE%) were selected as dependent variables. The optimal formulation demonstrated spherical morphology under scanning electron microscopy (SEM), optimum particle size of 116.3 nm, and high EE% of 83.2%. TTN-loaded nanocapsules improved photostability compared to its methanolic solution. The in vitro release study data showed that tretinoin was released in a sustained manner compared to the free drug. The ex vivo skin permeation study demonstrated that greater drug deposition into the epidermal region rather than the deep skin was observed with a gel containing TTN-loaded nanocapsules than that of drug solution, respectively. The skin irritation test revealed that the nanoencapsulation of the drug decreased its irritancy compared to the free drug. These results revealed the promising potential of cationic nanocapsules for topical delivery of tretinoin


Nanomaterials ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 1270
Author(s):  
Osama A. A. Ahmed ◽  
Usama A. Fahmy ◽  
Shaimaa M. Badr-Eldin ◽  
Hibah M. Aldawsari ◽  
Zuhier A. Awan ◽  
...  

Flibanserin (FLB) is a nonhormonal medicine approved by the Food and Drug Administration (FDA) to treat the hypoactive sexual appetite disorder in females. However, the peroral administration of the medicine is greatly affected by its poor bioavailability as a result of its extensive first-pass effect and poor solubility. Aiming at circumventing these drawbacks, this work involves the formulation of optimized FLB transfersome (TRF) loaded intranasal hydrogel. Box–Behnken design was utilized for the improvement of FLB TRFs with decreased size. The FLB-to-phospholipid molar ratio, the edge activator hydrophilic lipophilic balance, and the pH of the hydration medium all exhibited significant effects on the TRF size. The optimized/developed TRFs were unilamellar in shape. Hydroxypropyl methyl cellulose based hydrogel filled with the optimized FLB TRFs exhibited an improved ex vivo permeation when compared with the control FLB-loaded hydrogel. In addition, the optimized TRF-loaded hydrogel exhibited higher bioavailability and enhanced brain delivery relative to the control hydrogel following intranasal administration in Wistar rats. The results foreshadow the possible potential application of the proposed intranasal optimized FLB-TRF-loaded hydrogel to increase the bioavailability and nose-to-brain delivery of the drug.


Sign in / Sign up

Export Citation Format

Share Document