scholarly journals COMPARATIVE STUDY ON EFFECT OF NATURAL AND SYNTHETIC SUPERDISINTEGRANTS IN THE FORMULATION OF RIZATRIPTAN BENZOATE ORAL DISPERSIBLE TABLETS

Author(s):  
SHEEBA F. R. ◽  
KUNDAN CHAUDHARY

Objective: In the present study, the effects of a natural superdisintegrant gellan gum, karya synthetic gum superdisintegrants like sodium starch glycolate, crospovidone and combination of natural and synthetic superdisintegrant were compared in the formulations of rizatriptan benzoate oral dispersible tablets. Methods: This oral dispersible tablets were prepared by direct compression method and evaluated for weight variation, hardness, disintegration time, drug content, friability and dissolution. Drug compatibility with excipients was checked by FTIR studies. Stability study of the prepared tablets was done at 40±2°/75%±5% RH for a period of 1 mo. Results: FTIR studies showed that no any chemical interaction between drugs and excipients. The in vitro drug release study revealed that formulation F9 combination of both crospovidone and karya gum was the most successful formulation and disintegrate time within 13 seconds and drug release within 10 min. The drug release from the best formulations followed first-order kinetics, which is concentration-dependent. Short terms stability studies of the tablet for three months showed non-significant drug loss. Conclusion: The formulation containing a combination of natural and synthetic superdisintegrant was found to be the best results. Apart from fulfilling all official and other specifications, the tablets exhibited a higher rate of drug release.

Author(s):  
MEGHANA RAYKAR ◽  
MALARKODI VELRAJ

Objective: This study aims to Formulate Mouth Dissolving Tablets (MDTs) of Tofacitinib Citrate with the increase in bioavailability and patient compliance. Methods: Mouth Dissolving Tablets (MDTs) of Tofacitinib Citrate were developed by full factorial design at 32levelsand prepared by direct compression method using super integrants like sodium starch glycolate, Ludiflash. The tablets were compressed into compacts on a 10 station tablet machine. The bulk drug was characterised by determining, MP, Solubility, pH and FTIR spectra. Results: The weight variation, hardness and diameter, thickness, friability, drug content, wetting time, in vitro disintegration time and in vitro dissolution studies, and stability study, tablet thickness, weight variation and drug content post compression parameters remained consistent and reproducible. All the formulations showed, almost 100 percent of drug release within 75 min. Formulations F1, F2 and F3 were prepared with 5 mg of SSG and 20 mg, 30 mg, and 40 mg Ludiflash which shows % release of drug in the order of F1<F2<F3. Formulations F4, F5 and F6 were prepared with 10 mg of SSG and 20 mg, 30 mg, and 40 mg Ludiflash which shows % release of drug in the order of F4<F5<F6. Formulations F7, F8 and F9 were prepared with 15 mg of SSG and 20 mg, 30 mg, and 40 mg Ludiflash which shows % release of drug in the order of F7<F8<F9. Conclusion: It is concluded that the amount of superdisintegrants decreases disintegration time of tablets, decreases wetting time, increases the cumulative % drug release causes better absorption.


Author(s):  
S. Preethi ◽  
S. Padmapriya ◽  
A. N. Rajalakshmi

The study was aimed to formulate and evaluate dispersible tablets of a model anti-parasitic drug (XXX) with an objective to produce fast dispersion of tablets by reducing the disintegration time using three superdisintegrants like Sodium Starch Glycolate (SSG), Crospovidone (PVP K30) and Croscarmellose sodium (CCS) and also diluents namely MCC and Lactose by changing their concentrations in each formulations. Totally six formulations (F1-F6) were prepared by direct compression method and evaluated for hardness, thickness, weight variation, friability, wetting volume, wetting time, water absorption ratio, uniformity of dispersion, in-vitro disintegration time, Drug content, in-vitro dissolution test and release kinetics study. FTIR studies was carried out to see possible drug excipients interaction. The stability studies were performed as per ICH guidelines. Among the formulations F6 formulation was found to be promising as it showed better results than other five formulations with In-vitro disintegration time, percentage drug release and dispersion time of 16 ± 0.93 seconds, 98.32±0.54% and 66±1.30 seconds respectively. Further the FTIR results revealed that there was no interactionF between drug and excipients. Stability study of formulation showed no significant changes in tablet properties and the drug follows Higuchi release kinetics with Fickian diffusion mechanism.


Author(s):  
N. G. Rao ◽  
Upendra Kulkarni ◽  
Hari Prassanna C. ◽  
Basawaraj Patil ◽  
Rabbani G.

Felodipine which is used in the present study is a dihydropyridine derivative, that is chemically described as ethyl methyl-4-(2, 3-dichlorophenyl)-1,4-dihydro-2,6-dimethyl-3,5-pyridinedicarboxylate, widely accepted for its excellent antihypertensive and anti-anginal properties since it is calcium antagonist compound (calcium channel blocker). Felodipine is practically insoluble in water and its dissolution rate is limited by its physicochemical properties. In the present study fast disintegrating tablets of felodipine were prepared by adopting vacuum drying technique to study the effect of different subliming agents with various concentrations on disintegrating time. The powder blend was examined for the pre-compressional parameters. The prepared formulations were evaluated for post-compressional analysis for the parameters like hardness, friability, thickness, wetting time, water absorption ratio, weight variation, in-vitro disintegration time, in- vitro dispersion time, in-vitro dissolution study. Drug compatibility with excipients was checked by FTIR studies. The results obtained showed that quantity of ammonium bicarbonate, urea and menthol significantly affect the response variables (P> 0.05). No chemical interaction between drug and excipients was confirmed by FTIR studies. Stability studies carried out as per ICH guidelines for three months and results revealed that upon storage disintegration time of tablets decreased significantly (P> 0.05). The results concluded that fast disintegrating tablets of felodipine showing enhanced dissolution rate with increasing the concentrations of subliming agents. Among all the formulations A3 and M3 shows the improved dissolution rate which lead to improved bioavailability and effective therapy by using vacuum drying technique.


2019 ◽  
Vol 11 (1) ◽  
pp. 158
Author(s):  
Harikesh Maurya ◽  
Tirath Kumar

Objective: The study was designed as formulation, standardization, and evaluation of polyherbal dispersible tablet prepared for the management of kidney disorders. To overcome the problem of dyspepsia in geriatric patients by the use of polyherbal dispersible tablets.Methods: Dispersible tablets were prepared using aqueous root extract powder of the selected plant viz. A. officinalis, B. diffusa, C. papaya, C. fistula, C. intybus, F. hispida, F. indica, C. nurvala, S. virgaurea, and V. negundo with the help of superdisintegrant addition technique using crospovidone, sodium starch glycolate and croscarmellose sodium in different percentage. Evaluation assessments such as the substantial test, weight variation, hardness, friability, content uniformity, disintegration, in vitro dispersion, stability study and IR compatibility were carried out.Results: Micromeritics of extracts powder were determined for all formulation, which signifying good flow properties. The substantial examination was established, which comply with official requirements for uniformity test, and the drug content was close to 100% in all formulations. Disintegration time was observed for all formulation in which the polyherbal formulation-3 (PHF-3) showing 1.10±0.10 min; during in vitro dispersion time, all formulation showed appropriate dispersion in which the PHF-3 captivating 2.00±0.45 min only. The IR compatibility shows none chemical interaction between the extracts and excipients.Conclusion: The PHF-3 showed satisfactory disintegration and in vitro dispersion time due to crospovidone and reported as the best formulation. The stability study and IR compatibility validate the PHF may represent new easily swallow dispersible tablet that may enhance drug permeability and advance bioavailability for nephrotic patients. 


Author(s):  
Sudarshan Singh ◽  
S S Shyale ◽  
P Karade

The aim of this study was to design orally disintegrating tablet (ODT) of Lamotrigine. It is an Antiepileptic drug which is widely used in epilepsy. It is also used in simple and complex partial seizures and secondary generalized tonic-clonic seizures. It is poorly water soluble drug (0.46 mg/ml). Thus, an attempt was made to enhance the water solubility by complexation with β-cyclodextrin (1:1 molar ratios). The orally disintegrating tablet of lamotrigine was prepared by direct compression method using different concentration of superdisintegrants such as Sodium starch glycollate, croscarmellose sodium by sublimating agent such as camphor. The formulations were evaluated for weight variation, hardness, friability, drug content, wetting time, in vitro disintegration time and in vitro dissolution studies. The prepared tablets were characterized by Fourier transform infrared spectroscopy and differential scanning calorimetry. The disintegration time for the complexed tablets prepared by different concentration of superdisintegrants was found to be in range of 32.54 ± 0.50 to 55.12 ± 0.57 sec and wetting time of the formulations was found to be in range of 28.47 ± 0.67 to 52.19 ± 0.72 sec. All the formulation showed almost 100 percent of drug release within 15 min. Among all the formulation F6 and F7 prepared with 18% croscarmellose sodium and camphor shows faster drug release, respectively 10 min, F6 gives good result for disintegration time, drug release, wetting time and friability. Further formulations were subjected to stability testing for 30 days at temperature of 40 ± 5 ºC/75 ± 5 %RH. Tablets showed no appreciable changes with respect to physical appearance, drug content, disintegration time and dissolution profiles. Results were statistically analyzed by one-way ANOVA at a p < 0.05. It was found that, the data at any point of time are significant at p < 0.05.


INDIAN DRUGS ◽  
2020 ◽  
Vol 57 (01) ◽  
pp. 37-43
Author(s):  
Ashwin A. Patil ◽  
Ketan B. Patil ◽  
Laxmikant R. Zawar

Present work focused on thiolation for enhancing the mucoadhesive potential of Gum kondagogu (GK). Thiolation of GK was done by esterification process with 80 % thioglycolic acid in presence of 7N HCl. Thiolated Gum kondagogu (ThioGK) was determined to possess 1.59 ±0.04 mmol of thiol groups/g of the polymer by Ellman’s method. ThioGK was characterized by FTIR, NMR, DSC, XRD, and FE-SEM. The tablets were prepared by direct compression using 75 mg of ThioGK and GK. Tablets containing ThioGK (F1) and GK (F2) were subjected to evaluation of weight variation, hardness and friability and show enhanced disintegration time, swelling behavior, drug release and mucoadhesion. In vitro drug release of batch F1 exhibits complete release of drug in 24 hr with zero order release kinetics. Comparative mucoadhesive strength was studied using chicken ileum by texture analyzer and revealed higher mucoadhesion of tablet containing ThioGK. From the above study, ThioGK was suitability exploited as mucoadhesive sustained release matrix tablet.


Author(s):  
Mohammed Sarfaraz ◽  
Surendra Kumar Sharma

ABSTRACTObjective: The main objective of this research was to formulate Fast disintegrating tablets of Flurbiprofen incorporating superdisintegrants, isolated from natural sources like Plantago ovata (PO) seeds, Lepidium sativum (LS) seeds and agar-agar.Methods: Superdisintegrants were isolated from their natural sources using reported methods. Swelling index and hydration capacity was determined for the natural superdisintegrants to know their disintegration capacity. The tablet formulations were designed using isolated natural superdisintegrants. The powder blends were evaluated for pre-compressional parameters like angle of repose, bulk density, tapped density, carr’s index, and hausner’s ratio. Fast disintegrating tablets were prepared by direct compression method. The compressed tablets were characterized for post compression parameters.Results: All formulations had hardness, friability, weight variation and drug content within the pharmacopoeial limits. The wetting time was 84 to 254 sec, in vitro disintegration time was between 59.2 to 221 sec, and in-vitro drug release was as low as 11.80% (LS1) to a maximum of 98.99% (PO4) after 4 min of study. Among all, optimized formulation was PO4, as it showed good wetting time (84 sec), fastest disintegration time (59.2 sec), dispersion time (135 sec) and drug release of 98.99.% within 4 min.Conclusion: Flurbiprofen FDT’s were successfully developed using isolated natural disintegrants. The natural disintegrants isolated showed promising results and can prove as effective alternative for synthetic disintegrants.


2017 ◽  
Vol 9 (4) ◽  
pp. 92
Author(s):  
Hrishav Das Purkayastha ◽  
Bipul Nath

Objective: The aim of the present investigation was to design and evaluate orally disintegrating tablet (ODT) of Ibuprofen, a NSAID drug used for the treatment of arthritis with a view to improve its oral bioavailability. The focus of the current study was to develop ODT of Ibuprofen using super disintegrants for ease of administration and its physicochemical characterization.Methods: Tablets were made from blends by direct compression method. All the ingredients were passed through mesh no. 80. All the ingredients were co-ground in a pestle motor. The resulting blend was lubricated with magnesium stearate and compressed into tablets using the Cadmach single punch (round shaped, 8 mm thick) machine.Results: Physicals parameters of the prepared tablets like Hardness, Weight variation, Friability, thickness, drug content etc. found within the limits. The disintegration time of prepared ODTs was in the range of 45 to 55 seconds. In vitro dispersion time was found to be 22 to 52 seconds which may be attributed to faster uptake of water due to the porous structure formed by super disintegrants. Short disintegration and faster release of ibuprofen were observed with Cross carmellose sodium as compared to sodium starch glycollate.Conclusion: It is concluded that F3 offered the relatively rapid release of Ibuprofen when compared with other formulations. The increase in the concentrations of super disintegrants may lead to increase in the drug release. The formulation prepared with cross carmellose sodium was offered the relatively rapid release of Ibuprofen when compared with other concentrations of both the super disintegrant. 


Author(s):  
MANIKIRAN S. S. ◽  
NAGAM SANTHI PRIYA ◽  
B. AUBINE MOLLY ◽  
LAKSHMI PRASANTHI NORI

Objective: This research focused on the design of fast dissolving herbal film of Eclipta Prostrate leaves extract for mouth ulcers. Methods: The extract of Eclipta Prostrata leaves was formulated as films by solvent casting method using various polymers viz., HPMC E5, HPMC E15, sodium alginate and PVA. The films were designed by using propylene glycol as a plasticizer, SSG as super disintegrate and honey as a sweetener. Furthermore, the films were evaluated for thickness, folding endurance, weight variation, % elongation, surface pH, % moisture uptake, % moisture loss, disintegration and in vitro drug release study. Results: The revealed that all the films were good in appearance and had a smooth texture. Out of all ten formulations, F3 and F5 disintegrated rapidly with a disintegration time of 27 and 32 seconds. The drug release studies revealed that all the formulations had a good release profile, but the F3 formulation showed rapid release i.e. 83.57% in 4 min. The stability studies revealed that the formulations F3 and F5 were found good with non-tackiness, easily separable and disintegrated at 29 and 33 sec respectively with no appearance and drug release. Conclusion: The research revealed that Eclipta prostrate leaves extract can be formulated into oral films for the treatment of mouth ulcers with improved bioavailability and expected patient compliance.


Author(s):  
Hemant A. Deokule ◽  
Smita S. Pimple ◽  
Praveen D. Chaudhari ◽  
Ajit S. Kulkarni

Fast dissolving strips are used as novel approaches, as it dissolves rapidly in mouth and directly reaches the systemic circulation. In present research work, an attempt has been made to prepare mouth dissolving strips of Metoclopramide hydrochloride by using a novel film former Pullulan by solvent casting method. A33 full factorial design was utilized for the optimization of the effect of independent variables such as the amount of Pullulan, amount of PEF 400, amount of SSG on mechanical properties, and % drug release of strips. The drug compatibility studies using FTIR and DSC studies formulated strips were characterized for their physicochemical parameter like weight variation, visual appearance, folding endurance, thickness, disintegration time, drug content, and in vitro dissolution studies. FTIR and DSC studies revealed that the polymer is compatible with the drug. It was found that the optimum levels of the responses for a fast release strip could be obtained at low levels of Pullulan, PEG400, and SSG. The prepared strip was clear transparent and had a smooth surface. The surface pH was found 4.8 to 5.2 be in the range of to which is close to salivary pH, which indicates that strips may have less potential to irritate the oral mucosa, thereby they are comfortable. The drug release was found to be between 90.94 to 100.5% in 2 min. The in-vitro disintegration time of strips prepared with Pullulan was in the range of 19 to 57 sec. As the concentration of SSG increases the decrease in the disintegration time of strips a decrease. The dissolution rate increased with an increase in the concentration of SSG. Hence, it can be inferred that the fast dissolving oral strips of Metoclopramide hydrochloride may produce rapid action thereby improving bioavailability and enhance the absorption by avoiding the first-pass effect.


Sign in / Sign up

Export Citation Format

Share Document