scholarly journals FORMULATION AND EVALUATION OF FLOATING MICROSPHERES OF CIPROFLOXACIN BY SOLVENT EVAPORATION METHOD USING DIFFERENT POLYMERS

Author(s):  
KAUSLYA ARUMUGAM ◽  
PAYAL D. BORAWAKE ◽  
JITENDRA V. SHINDE

Objective: The main intention of this research was to formulate and evaluate floating microspheres of ciprofloxacin using different polymers to prolong gastric residence time. Methods: The microspheres were formulated by the solvent evaporation method using different ratios of polymers like carbopol 940, ethylcellulose, and Hydroxy Propyl Methyl Cellulose K4M. Further, the floating microspheres were evaluated for micromeritic properties like bulk density, tapped density, angle of repose, etc., percentage yield, particle size, entrapment efficiency, floating capacity, in vitro drug release study, release kinetics, drug content, swelling index, and Fourier Transform Infrared Spectroscopy (FTIR) (Compatibility studies). Results: The ciprofloxacin microspheres showed the good flowing property. The particle size ranged from 258.1±2.21 µm to 278±2.86 µm and entrapment efficiency ranged from 63.17±0.43% to 89.90±1.32%. The IR spectrum revealed that there was no interaction between the drug and polymer. F7 formulation was found to be the best formulation. Drug release was found to be 90.70±0.89% i.e. in a controlled manner at the end of 10 h. Conclusion: The floating microspheres were prepared successfully and the results clearly stated that prepared ciprofloxacin microspheres may be safe and effective controlled drug delivery over an extended period which can increase bioavailability, patient compliance, and decrease dosing frequency.

Author(s):  
Dinesh V. Panpaliya ◽  
Atish Y. Sahare ◽  
Priyanka Lanje ◽  
Pooja Dhoke

The aim of the present work was to develop and evaluate of oral microsphere of Levetiracetam to reduce the frequency of dosing by achieving 12 hours sustained drug release. The microsphere formed will also mask the bitter taste of the drug and thus increase the compatibility of the drug with the patients. Levetiracetam is a second-generation anti-epileptic agent useful in the treatment of partial onset and monoclinic seizures. It has a short half life of 7 hours and its recommended dose is 500 mg twice a daily. Microspheres are suitable drug delivery system for such drug candidate. For these reasons it is must to formulate a suitable dosage form by which it will be easier to administer the dose and also to get a sustained drug release hence microsphere was prepared using solvent evaporation method. Preformulation studies were carried out to rule out any drug polymer interaction by FTIR technique. In this study formulation was done solvent evaporation method using different percentage of HPMC– K 100, HPMC- K 15 and coated with Eudragit S100. Drug, polymer and physical mixture were evaluated for in compatibility study by Fourier transforms infrared spectroscopy. All the batches of microsphere (F1 to F5) were subjected for in vitro dissolution. Microsphere was evaluated for surface morphology, micromeritics properties, entrapment efficiency and in vitro drug release. The entrapment efficiency of microsphere ranged from 71.16%-73.66%. The size of the prepared microsphere ranges between 42.8 µm to 55.64 µm which was found to increase with increase in RPM at same polymer ratio. Micromeritics studies showed good flow properties. Among the microsphere batches, F5 was observed as an optimized batch as its formulation with polymer i.e. Eudragit-S 100 and HPMC-K 100 was found to be release in sustained manner. The F-5 batch shows is 79.45% drug release at the end of 7 hrs and its stability study indicate that these microspheres were stable at selected temperature and humidity


Author(s):  
DIVYA ◽  
INDERBIR SINGH ◽  
UPENDRA NAGAICH

Objective: The aim of this study is to develop and in vitro evaluation of prepared fluconazole nanogel for seborrheic dermatitis Methods: Fluconazole nanogel was formulated to act against seborrheic dermatitis. The fluconazole nanoparticles were prepared by a simplified evaporation method and evaluated for particle size, entrapment efficiency, and percent in vitro drug release. The nanogel was also characterized based on parameters like particle size, percent entrapment efficiency, shape surface morphology, rheological properties, in vitro release R² = 0.9046, and release kinetics. Results: The nanoparticle with a combination of Eudragit RS and Tween 80 showed the best result with particle size in the range of 119.0 nm to 149.5 nm, with a cumulative percent drug release of 95 % up to 18 h. The formulated nanogel with optimum concentration of HPMC authenticate with particle size 149.50±0.5 with maximum drug release (92.13±0.32) %. Conclusion: Different percentages of polymers (ethyl-cellulose, eudragit, and tween 80) are used as variable components in the formulation of nanogel. The optimized batch showed good physical properties (flow index, spreadability, and viscosity) along with rapid drug release. Therefore, it can be concluded that nanogel containing fluconazole has potential application in topical delivery.


2019 ◽  
Vol 9 (1-s) ◽  
pp. 60-66 ◽  
Author(s):  
Kapil Purohit ◽  
Navneet Garud

Hollow multі-unіt mіcrospheres were prepared by a solvent dіffusіon technіque іn emulsіon wіth a drug and an acrylіc polymer. These were dіssolved іn a mіxture of ethanol-dіchloromethane and poured іnto an aqueous solutіon of PVA wіth stіrrіng to form emulsіon droplets. The rate of drug release іn mіcro balloons was controlled by changіng the ratіo of polymer to drug. The mіcroballoons were floatіng іn vіtro for 12-24 hours when submerged іn aqueous medіa. Radіographіc studіes showed that mіcroballons admіnіstered orally to humans were dіspersed іn the upper part of the stomach and were held there for 3 hours agaіnst perіstaltіc movement. Floating Microspheres of Losartan potassium were formed by Solvent Evaporation method .The formulas LP7 of Losartan Potassium Floating Microspheres shows a very good drug release profiles and shown better sustained action till the end of last hour (24th hrs). It will improve patient compliance and increase in bioavailability which give better approach to treat hypertensive condition and the angiotensin receptor blocking action of Losartan lower the long term complications of Hypertension and reduce the risk of heart failure, CHF, Myocardial Infarction and also vascular damage in blood vessels and kidney. Keywords: Losartan Potassium, Floating microspheres, Drug Entrapment, In-vitro drug release.


INDIAN DRUGS ◽  
2013 ◽  
Vol 50 (12) ◽  
pp. 21-26
Author(s):  
C.H. Sravanthi ◽  
◽  
S. Punitha

The present study was aimed at the overall improvement in the efficacy, reduced toxicity andenhancement of therapeutic index of aceclofenac. Niosomal delivery system of aceclofenac has beendeveloped by various techniques using mixture of Span 60/40 (surfactant) along with cholesterol in1:1 ratio. The formulations were then characterized with respect to vesicle diameter, drug content,entrapment efficiency, in-vitro drug release and release kinetics. The formulated aceclofenac niosomeswere discrete and round in shape. The lowest entrapment efficiency was found to be 75% (F2) andwas highest in reverse phase evaporation method 95% (F5). Percentage cumulative drug release waswell retarded for up to 24 h in F5 (59%) compared to all other formulations and its release pattern wasanalysed by using various mathematical models and found to follow under zero order kinetics. From thet50% values of F5, it is concluded that the reverse phase evaporation method seems to extend the drugrelease for prolonged period.


INDIAN DRUGS ◽  
2014 ◽  
Vol 51 (11) ◽  
pp. 17-23
Author(s):  
K Prakash ◽  
◽  
Y Phalguna ◽  
D. H. Narayana

The present study was aimed to develop and evaluate polycaprolactone–chitosan nanospheres of doxorubicin hydrochloride (DXO) in different drug to polymer ratios using double-emulsion solvent evaporation and solvent diffusion methods. FTIR studies showed that there was no chemical interaction between the drug and polymers. Scanning electron microscopy showed the nanospheres having a discrete spherical structure without aggregation. Prepared nanospheres were characterized for particle size, zeta potential, entrapment efficiency and in-vitro drug release kinetics. Nanospheres showed the particle size of 700±105to770±115 nm with an entrapment efficiency of 66.23±0.11% to 93.62±0.17%. The DXO content was found 76±0.12% to 91±0.36% in several batches. In-vitro drug release studies were performed using the dialysis membrane method. All the drug loaded batches were rendered sustained release over a period of 24 h.


2013 ◽  
Vol 16 (1) ◽  
pp. 39-44 ◽  
Author(s):  
Nandini Saha ◽  
Ikramul Hasan ◽  
Mehrina Nazmi ◽  
Md Selim Reza

Ibuprofen, a non-steroidal anti-inflammatory drug was formulated as microspheres by using Methocel K4M & Eudragit RSPO. These microspheres were prepared by emulsification solvent evaporation method to provide sustained action and to minimize local side effect of Ibuprofen by avoiding the drug release in the upper gastrointestinal tract. The prepared microspheres were subjected to various evaluation and in-vitro release studies. In-vitro drug release was studied in a paddle type dissolution apparatus (USP Type II Dissolution Apparatus) using Phosphate buffer (pH 7.4) as the dissolution medium at 37.5oC for 6 hours (paddle speed 50 RPM). The release mechanisms were explored and explained with Zero Order, First Order, Higuchi and Korsmeyer-Peppas equations. The correlation coefficients values of the trend lines of the graphs showed that the formulations best fit with Korsmeyer-Peppas release pattern. Microspheres’ morphology and chemical integrity were studied by a scanning electron microscope (SEM) and Fourier transforms infrared spectroscopy (FTIR) respectively. DOI: http://dx.doi.org/10.3329/bpj.v16i1.14489 Bangladesh Pharmaceutical Journal 16(1): 39-44, 2013


2016 ◽  
Vol 15 (1) ◽  
pp. 47-55
Author(s):  
Md Ataur Rahman ◽  
Nusrat Ahmed ◽  
Ikramul Hasan ◽  
Md Selim Reza

In the present study naproxen loaded microspheres were prepared by emulsification solvent evaporation method in order to achieve targeted drug delivery. Eudragit L 100 and Eudragit S 100 were used as the rate retardant polymers in the preparations. Thirteen formulations (F1-F13) were prepared using 22 factorial design by changing the concentration of these two polymers. All the formulations were evaluated for product yield, drug content, entrapment efficiency, particle size and drug release profiles. Highest drug content and entrapment efficiency were found to be 30.17% (F4) and 91.86% (F8) respectively. The particle size was found to be 159.26-234.70 ?m for all formulations. In-vitro drug release studies were performed using USP type II (Paddle) apparatus for 8 hrs in pH 7.4 phosphate buffer. The maximum drug release after 8 hrs was found to be 60.19% for batch F4. The release kinetics of all formulations were evaluated by using zero order, first order, Higuchi, Korsmeyer-Peppas, Kopcha and Hixson Crowell model. Almost all formulations fitted best with the Kopcha kinetic model. The SEM study indicated the spherical structure of the microspheres having rough surfaces.Dhaka Univ. J. Pharm. Sci. 15(1): 47-55, 2016 (June)


2021 ◽  
Vol 18 (4) ◽  
pp. 733-741 ◽  
Author(s):  
Paroma Arefin ◽  
Md Shehan Habib ◽  
Mohammad Mostafa ◽  
Dipankar Chakraborty ◽  
Sreebash Chandra Bhattacharjee ◽  
...  

Microspheres, a potential drug delivery approach, has opened a new era for attaining versatile release patterns needed. By optimizing the formulation variables, they can be prepared to obtain targeted release, immediate release, sustained release patterns. The release of the active drug material depends upon a number of formulation parameters such as polymers, stirring speed (rpm), methodology, surfactants, etc. Fexofenadine hydrochloride (HCl) is a second generation antihistamine. Our present research has explored the effects of using different rpm (600- 1000 rpm) in preparing fexofenadine hydrochloride (HCl) microspheres by emulsion solvent evaporation method. The formulation is aimed to provide sustained release for the required long period with a high margin of safety. We used a blended mixture of Hydroxy Propyl Methyl Cellulose (HPMC) K 100 MCR and Eudragit RL100 polymers to have sustained-release microspheres. The impact of different rpm on Yield, drug encapsulation efficiency, flow properties, and dissolution pattern were appraised. We observed the release of the drug for 10 hours in phosphate buffer (pH 6.8) and evaluated the drug release spectrophotometrically. Our study finds that the release of fexofenadine HCl from the microspheres was significantly increased with drug loading. We found the dosage forms to follow Higuchi release kinetics and Hixson-Crowell release kinetics the most, indicating successful achievement of sustained-release pattern in the dosage form. The change in drug release rate was statistically significant for variation in the stirring rate. We found that 600 rpm was the most optimized stirring rate for preparing microspheres in the emulsion solvent evaporation method.


Author(s):  
Gurpreet Kandav ◽  
D.c. Bhatt ◽  
Deepak Kumar Jindal

Objective: The objective of the present investigation was to fabricate and characterize allopurinol loaded chitosan nanoparticles (A-CNPs) for sustained release of drug. Methods: The allopurinol loaded chitosan nanoparticles were successfully prepared by employing the ionotropic gelation method. Further, particle size (PS), polydispersity index (PDI), zeta potential (ZP), Differential Scanning Calorimetry (DSC), entrapment efficiency (EE), Transmission Electron Microscopy (TEM), in vitro drug release, X-Ray Diffraction (XRD) and Fourier transform infrared (FTIR) were used for evaluating formulated A-CNPs Results: A-CNPs was successfully prepared and the particle size, polydispersity index, ZP and entrapment efficiency were found to be 375.3±10.1 nm, 0.362±0.01 and 32.5±2.7 mV and 52.56±0.10% respectively. In vitro release profile of A-CNPs showed sustained release and Higuchi model was found to be best fit for drug release kinetics. FTIR study depicted no chemical interaction between pure drug allopurinol (AL) and other excipients. Conclusion: The sustained release formulation of allopurinol was successfully prepared using HMW chitosan and evaluated for different parameters.


Sign in / Sign up

Export Citation Format

Share Document