scholarly journals Efficient Design of Error Recovery and Improve the Performance Using Mesh of Ring Topology Based NoC

Author(s):  
A. Kalimuthu ◽  
Dr. M. Karthikeyan
2010 ◽  
Vol E93-C (7) ◽  
pp. 1038-1046
Author(s):  
Jae-Ho LEE ◽  
Kimio SAKURAI ◽  
Jiro HIROKAWA ◽  
Makoto ANDO
Keyword(s):  

2020 ◽  
Vol 10 (4) ◽  
pp. 471-477
Author(s):  
Merin Loukrakpam ◽  
Ch. Lison Singh ◽  
Madhuchhanda Choudhury

Background:: In recent years, there has been a high demand for executing digital signal processing and machine learning applications on energy-constrained devices. Squaring is a vital arithmetic operation used in such applications. Hence, improving the energy efficiency of squaring is crucial. Objective:: In this paper, a novel approximation method based on piecewise linear segmentation of the square function is proposed. Methods: Two-segment, four-segment and eight-segment accurate and energy-efficient 32-bit approximate designs for squaring were implemented using this method. The proposed 2-segment approximate squaring hardware showed 12.5% maximum relative error and delivered up to 55.6% energy saving when compared with state-of-the-art approximate multipliers used for squaring. Results: The proposed 4-segment hardware achieved a maximum relative error of 3.13% with up to 46.5% energy saving. Conclusion:: The proposed 8-segment design emerged as the most accurate squaring hardware with a maximum relative error of 0.78%. The comparison also revealed that the 8-segment design is the most efficient design in terms of error-area-delay-power product.


Sensors ◽  
2020 ◽  
Vol 20 (13) ◽  
pp. 3747
Author(s):  
Adriana Lipovac ◽  
Vlatko Lipovac ◽  
Borivoj Modlic

Contemporary wireless networks dramatically enhance data rates and latency to become a key enabler of massive communication among various low-cost devices of limited computational power, standardized by the Long-Term Evolution (LTE) downscaled derivations LTE-M or narrowband Internet of Things (NB IoT), in particular. Specifically, assessment of the physical-layer transmission performance is important for higher-layer protocols determining the extent of the potential error recovery escalation upwards the protocol stack. Thereby, it is needed that the end-points of low processing capacity most efficiently estimate the residual bit error rate (BER) solely determined by the main orthogonal frequency-division multiplexing (OFDM) impairment–carrier frequency offset (CFO), specifically in small cells, where the signal-to-noise ratio is large enough, as well as the OFDM symbol cyclic prefix, preventing inter-symbol interference. However, in contrast to earlier analytical models with computationally demanding estimation of BER from the phase deviation caused by CFO, in this paper, after identifying the optimal sample instant in a power delay profile, we abstract the CFO by equivalent time dispersion (i.e., by additional spreading of the power delay profile that would produce the same BER degradation as the CFO). The proposed BER estimation is verified by means of the industry-standard LTE software simulator.


2017 ◽  
Vol 742 ◽  
pp. 395-400 ◽  
Author(s):  
Florian Staab ◽  
Frank Balle ◽  
Johannes Born

Multi-material-design offers high potential for weight saving and optimization of engineering structures but inherits challenges as well, especially robust joining methods and long-term properties of hybrid structures. The application of joining techniques like ultrasonic welding allows a very efficient design of multi-material-components to enable further use of material specific advantages and are superior concerning mechanical properties.The Institute of Materials Science and Engineering of the University of Kaiserslautern (WKK) has a long-time experience on ultrasonic welding of dissimilar materials, for example different kinds of CFRP, light metals, steels or even glasses and ceramics. The mechanical properties are mostly optimized by using ideal process parameters, determined through statistical test planning methods.This gained knowledge is now to be transferred to application in aviation industry in cooperation with CTC GmbH and Airbus Operations GmbH. Therefore aircraft-related materials are joined by ultrasonic welding. The applied process parameters are recorded and analyzed in detail to be interlinked with the resulting mechanical properties of the hybrid joints. Aircraft derived multi-material demonstrators will be designed, manufactured and characterized with respect to their monotonic and fatigue properties as well as their resistance to aging.


Sign in / Sign up

Export Citation Format

Share Document