Modification of galvanic coating "tin-bismuth" by carbon nanotubes to improve the corrosive resistance

2019 ◽  
Vol 12 (1) ◽  
pp. 40-47
Author(s):  
D.V. Davydova ◽  
N.V. Tarasova ◽  
I.A. Djyakov ◽  
Yu.V. Litovka
Author(s):  
M. Nasraoui ◽  
◽  
Yu.V. Litovka ◽  
V.Yu. Dolmatov ◽  
◽  
...  

A method to increase the microhardness of the chromium galvanic coating by adding a mixture of carbon nanomaterials (nanodiamonds, single-walled and multi-walled nanotubes, graphene oxide) into a standard chromium galvanic coating electrolyte was proposed. The increase in the microhardness of the chromium galvanic coating was revealed and explained. This is due to a combination of two mechanisms: the introduction of nanodiamonds into the crystal lattice of the coating metal and the appearance of additional crystallization centers on defects in carbon nanotubes. The method of obtaining parts with a higher service life when using traditional chromium galvanic coating, as well as when using multi-walled carbon nanotubes, single-walled carbon nanotubes, nanodiamonds, and graphene oxide separately, was demonstrated. The best result was obtained using a mixture of nanodiamonds and multi-walled carbon nanotubes. The microhardness of the nanomodified chromium galvanic coating was measured, and it was found to increase by 27 %.


RSC Advances ◽  
2016 ◽  
Vol 6 (108) ◽  
pp. 106090-106095 ◽  
Author(s):  
V. T. Dau ◽  
C. D. Tran ◽  
T. T. Bui ◽  
V. D. X. Nguyen ◽  
T. X. Dinh

Recent advances in assembling Carbon NanoTubes (CNTs) into macrostructures with outstanding properties, such as high tensile strength, high conductivity and porosity, and strong corrosive resistance, have underpinned potentially novel applications.


Author(s):  
Jun Jiao

HREM studies of the carbonaceous material deposited on the cathode of a Huffman-Krätschmer arc reactor have shown a rich variety of multiple-walled nano-clusters of different shapes and forms. The preparation of the samples, as well as the variety of cluster shapes, including triangular, rhombohedral and pentagonal projections, are described elsewhere.The close registry imposed on the nanotubes, focuses attention on the cluster growth mechanism. The strict parallelism in the graphitic separation of the tube walls is maintained through changes of form and size, often leading to 180° turns, and accommodating neighboring clusters and defects. Iijima et. al. have proposed a growth scheme in terms of pentagonal and heptagonal defects and their combinations in a hexagonal graphitic matrix, the first bending the surface inward, and the second outward. We report here HREM observations that support Iijima’s suggestions, and add some new features that refine the interpretation of the growth mechanism. The structural elements of our observations are briefly summarized in the following four micrographs, taken in a Hitachi H-8100 TEM operating at an accelerating voltage of 200 kV and with a point-to-point resolution of 0.20 nm.


Nature China ◽  
2007 ◽  
Author(s):  
Rachel Pei Chin Won
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document