scholarly journals ON BINOMIAL SUMS WITH THE TERMS OF SEQUENCES {g_kn} AND {h_kn}

Author(s):  
Sibel Koparal ◽  
Neşe Ömür ◽  
Cemile Duygu Çolak

In this paper, we derive sums and alternating sums of products of terms ofthe sequences $\left\{ g_{kn}\right\} $ and $\left\{ h_{kn}\right\} $ withbinomial coefficients. For example,\begin{eqnarray*} &\sum\limits_{i=0}^{n}\binom{n}{i}\left( -1\right) ^{i} \left(c^{2k}\left(-q\right) ^{k}+c^{k}v_{k}+1\right)^{-ai}h_{k\left( ai+b\right) }h_{k\left(ai+e\right) } \\ &=\left\{ \begin{array}{clc} -\Delta ^{\left( n+1\right) /2}g_{k\left( an+b+e\right) }g_{ka}^{n}\left( c^{2k}\left( -q\right) ^{k}+c^{k}v_{k}+1\right) ^{-an} & \text{if }n\text{ is odd,} & \\ \Delta ^{n/2}h_{k\left( an+b+e\right) }g_{ka}^{n}\left( c^{2k}\left( -q\right) ^{k}+c^{k}v_{k}+1\right) ^{-an} & \text{if }n\text{ is even,} & \end{array}% \right.\end{eqnarray*}%and\begin{eqnarray*} &&\sum\limits_{i=0}^{n}\binom{n}{i}i^{\underline{m}}g_{k\left( n-ti\right) }h_{kti} \\ &&=2^{n-m}n^{\underline{m}}g_{kn}-n^{\underline{m}}\left( c^{2k}\left( -q\right) ^{k}+c^{k}v_{k}+1\right) ^{n\left( 1-t\right) }h_{kt}^{n-m}g_{k\left( tm+tn-n\right) },\end{eqnarray*}%where $a, b, e$ is any integer numbers, $c$ is nonzero real number and $m$is nonnegative integer.

1994 ◽  
Vol 87 (3) ◽  
pp. 161-170
Author(s):  
James R. Rahn ◽  
Barry A. Berndes

Power functions and exponential functions often describe the relationship between variables in physical phenomena. Power functions are equations of the form y = kxn (see fig. 1), where k is a nonzero real number and n is a nonzero real number not equal to 1. Exponential functions are equations of the form y = kbx (see fig. 2), where k is a nonzero real number and b is a positive real number. Students should be able visually to recognize these functions so that they can easily identify their appearance when experimental data are graphed. When physical phenomena appear to describe exponential and power functions, logarithms can be used to locate approximate functions that represent the phenomena.


2016 ◽  
Vol 11 (1) ◽  
pp. 159-164
Author(s):  
Radhakrishnan Nair ◽  
Entesar Nasr

AbstractThe paper gives conditions for a sequence of fractional parts of real numbers $\left( {\{ a_n x\} } \right)_{n = 1}^\infty $ to satisfy a pair correlation estimate. Here x is a fixed nonzero real number and $\left( {a_n } \right)_{n = 1}^\infty $ is a random walk on the integers.


2012 ◽  
Vol 96 (536) ◽  
pp. 337-342
Author(s):  
N. Gauthier ◽  
Paul S. Bruckman

1983 ◽  
Vol 24 (2) ◽  
pp. 131-132 ◽  
Author(s):  
P. J. C. Lamont

Let C be the Cayley algebra denned over the real field. If, for given elements α, β, and γ of a quaternion subalgebra of C, α = βγ, it follows, by associativity, that for any nonzero element δ of the same quaternion subalgebra, α = (βδ)(δ-1γ). For Cayley numbers ζ ξ, and η with ζ = ξη, the relation ζ = (ξδ)(δ-1η) in general only holds when δ is a nonzero real number. Because of the existence of factorization results [1, 2] in the orders of C, the question naturally arises of whether it is possible to choose one-to-one mappings, θ and φ, of C onto itself such that ζ = θξ. φη whenever ζ = ξη. To discuss this question, we make the following definition.


2011 ◽  
Vol 07 (07) ◽  
pp. 1959-1976 ◽  
Author(s):  
VICTOR J. W. GUO ◽  
JIANG ZENG

We study divisibility properties of certain sums and alternating sums involving binomial coefficients and powers of integers. For example, we prove that for all positive integers n1,…,nm, nm+1 = n1, and any nonnegative integer r, there holds [Formula: see text] and conjecture that for any nonnegative integer r and positive integer s such that r + s is odd, [Formula: see text] where ε = ±1.


2009 ◽  
Vol 42 (2) ◽  
Author(s):  
Zvonko Čerin

AbstractIn this paper we obtain explicit formulae for sums of products of a fixed number of consecutive generalized Fibonacci and Lucas numbers. These formulae are related to the recent work of Belbachir and Bencherif. We eliminate all restrictions about the initial values and the form of the recurrence relation. In fact, we consider six different groups of three sums that include alternating sums and sums in which terms are multiplied by binomial coefficients and by natural numbers. The proofs are direct and use the formula for the sum of the geometric series.


2007 ◽  
Vol 127 (1) ◽  
pp. 17-31 ◽  
Author(s):  
Victor J. W. Guo ◽  
Frédéric Jouhet ◽  
Jiang Zeng

2021 ◽  
Vol 14 (3) ◽  
pp. 881-894
Author(s):  
Sudprathai Bupasiri

In this article, we study the fundamental solution of the operator $\oplus _{m}^{k}$, iterated $k$-times and is defined by$$\oplus _{m}^{k} = \left[\left(\sum_{r=1}^{p} \frac{\partial^2} {\partial x_r^2}+m^{2}\right)^4 - \left( \sum_{j=p+1}^{p+q} \frac{\partial^2}{\partial x_{j}^2} \right)^4 \right ]^k,$$ where $m$ is a nonnegative real number, $p+q=n$ is the dimension of the Euclidean space $\mathbb{R}^n$,$x=(x_1,x_2,\ldots,x_n)\in\mathbb{R}^n$, $k$ is a nonnegative integer. At first we study the fundamental solution of the operator $\oplus _{m}^{k}$ and after that, we apply such the fundamental solution to solve for the solution of the equation $\oplus _{m}^{k}u(x)= f(x)$, where $f(x)$ is generalized function and $u(x)$ is unknown function for $ x\in \mathbb{R}^{n}$.


Sign in / Sign up

Export Citation Format

Share Document