scholarly journals Experimental Investigations on the Performance and Emissions of Dual Fuel along with Engine modification in a DI Compression Ignition Engine

Author(s):  
A. Malaisamy
Author(s):  
N. T. Shoemaker ◽  
C. M. Gibson ◽  
A. C. Polk ◽  
S. R. Krishnan ◽  
K. K. Srinivasan

Different combustion strategies and fuel sources are needed to deal with increasing fuel efficiency demands and emission restrictions. One possible strategy is dual fueling using readily available resources. Propane and natural gas are readily available with the current infrastructure and biodiesel is growing in popularity as a renewable fuel. This paper presents experimental results from dual fuel combustion of methane (as a surrogate for natural gas) and propane as primary fuels with biodiesel pilots in a 1.9 liter, turbocharged, 4-cylinder compression ignition engine at 1800 rev/min. Experiments were performed with different percentage energy substitutions (PES) of propane and methane and at different brake mean effective pressures (BMEP/bmep). Brake thermal efficiency (BTE) and emissions (NOx, HC, CO, CO2, O2 and smoke) were also measured. Maximum PES levels for B100-methane dual fueling were limited to 70% at 2.5 bars bmep and 48% at 10 bars bmep, and corresponding values for B100-propane dual fueling were 64% and 43%, respectively. Maximum PES was limited by misfire at 2.5 bars bmep and the onset of engine knock at 10 bars bmep. Dual fuel BTEs approached straight B100 values at 10 bars bmep while they were significantly lower than B100 values at 2.5 bars bmep. In general, dual fueling was beneficial in reducing NOx and smoke emissions by 33% and 50%, respectively, from baseline B100 levels; however, both CO and THC emissions were significantly higher than baseline B100 levels at all PES and loads.


RSC Advances ◽  
2015 ◽  
Vol 5 (43) ◽  
pp. 33863-33868 ◽  
Author(s):  
M. Jindal ◽  
P. Rosha ◽  
S. K. Mahla ◽  
A. Dhir

Experimental investigations were conducted to evaluate the effects of n-butanol in biodiesel–diesel blends on the performance and emissions characteristics of a constant speed, direct injection diesel engine.


Author(s):  
S. Gowthaman ◽  
P. Sravan

The effect of premixed diesel fumigation (PDF) on performance and emissions characteristics of Homogenous Charge Compression Ignition (HCCI) engine and optimisation of the diesel fumigation temperature are prime focus of this study. The experimental investigations were carried on single cylinder, four stroke, water cooled, port injected Kirloskar SV1 engine. For this research, the engine was modified as HCCI engine with electric air heater, fixed at suction pipe. During the experimental investigation the diesel fuel was premixed by the port injector and vaporised or fumigated the fuel by heated suction air. After heating process, the diesel has changed its phase and mixed with air and form partially homogenous mixture. During the test, the engine was operated with different diesel fumigation temperature from 100C to 150C in steps of 10C and observed the performance and emissions characteristics of the engine. The effective diesel fumigation temperature for creating better homogeneous charge is identified. The diesel fumigation made huge impact on NOx and smoke formation. The level of NOx and smoke emissions were decreased simultaneously as 10% and 16% compared to compression ignition (CI) engine. At the same time, the HCCI engine has emitted high CO and HC emissions at low fumigation temperatures and they were reduced at high fumigation temperatures, because of improved combustion. The suction air temperatures of 120C and 130C for the HCCI engine registered low NOx and smoke emissions. From the performance point of view, the HCCI engine consumed much more fuel due to low volumetric efficiency and slightly affected the brake thermal efficiency.


2021 ◽  
pp. 146808742110183
Author(s):  
Jonathan Martin ◽  
André Boehman

Compression-ignition (CI) engines can produce higher thermal efficiency (TE) and thus lower carbon dioxide (CO2) emissions than spark-ignition (SI) engines. Unfortunately, the overall fuel economy of CI engine vehicles is limited by their emissions of nitrogen oxides (NOx) and soot, which must be mitigated with costly, resource- and energy-intensive aftertreatment. NOx and soot could also be mitigated by adding premixed gasoline to complement the conventional, non-premixed direct injection (DI) of diesel fuel in CI engines. Several such “dual-fuel” combustion modes have been introduced in recent years, but these modes are usually studied individually at discrete conditions. This paper introduces a mapping system for dual-fuel CI modes that links together several previously studied modes across a continuous two-dimensional diagram. This system includes the conventional diesel combustion (CDC) and conventional dual-fuel (CDF) modes; the well-explored advanced combustion modes of HCCI, RCCI, PCCI, and PPCI; and a previously discovered but relatively unexplored combustion mode that is herein titled “Piston-split Dual-Fuel Combustion” or PDFC. Tests show that dual-fuel CI engines can simultaneously increase TE and lower NOx and/or soot emissions at high loads through the use of Partial HCCI (PHCCI). At low loads, PHCCI is not possible, but either PDFC or RCCI can be used to further improve NOx and/or soot emissions, albeit at slightly lower TE. These results lead to a “partial dual-fuel” multi-mode strategy of PHCCI at high loads and CDC at low loads, linked together by PDFC. Drive cycle simulations show that this strategy, when tuned to balance NOx and soot reductions, can reduce engine-out CO2 emissions by about 1% while reducing NOx and soot by about 20% each with respect to CDC. This increases emissions of unburnt hydrocarbons (UHC), still in a treatable range (2.0 g/kWh) but five times as high as CDC, requiring changes in aftertreatment strategy.


Sign in / Sign up

Export Citation Format

Share Document