scholarly journals Acute Diseases Prognosis using Chatbot

Author(s):  
Shivanand Tiwari

The role of chatbots in healthcare is to help free-up valuable physician-time by reducing or eliminating unnecessary doctor’s appointments. As the increase in cost, various healthcare organizations are looking for different ways to manage cost while improving the user’s experience. As we know there is shortage of healthcare professionals that makes it increasingly necessary for us to augment technology with health facilities in order to allow doctors to focus on more critical patient needs. Keeping this in Mind we are aiming to develop a Project that will basically ask for Symptoms from the Patient and perform the Prognosis on the basis of already developed dataset. The Machine Learning Algorithm will work on that dataset of symptoms and their prognosis to tell exactly what has happened to the Patient and will help to Reach the Desired Consultant/Doctor with respect to the Prognosis. It will also help the Patients to get Useful Information regarding different diseases that may help to deal with some Chronic Diseases at an early Stage!’

Since the introduction of Machine Learning in the field of disease analysis and diagnosis, it has been revolutionized the industry by a big margin. And as a result, many frameworks for disease prognostics have been developed. This paperfocuses on the analysis of three different machine learning algorithms – Neural network, Naïve bayes and SVM on dementia. While the paper focuses more on comparison of the three algorithms, we also try to find out about the important features and causes related to dementia prognostication. Dementia is a severe neurological disease which renders a person unable to use memory and logic if not treated at the early stage so a correct implementation of fast machine learning algorithm may increase the chances of successful treatment. Analysis of the three algorithms will provide algorithm pathway to do further research and create a more complex system for disease prognostication.


2021 ◽  
Author(s):  
Howard Maile ◽  
Ji-Peng Olivia Li ◽  
Daniel Gore ◽  
Marcello Leucci ◽  
Padraig Mulholland ◽  
...  

BACKGROUND Keratoconus is a disorder characterized by progressive thinning and distortion of the cornea. If detected at an early stage corneal collagen cross linking can prevent disease progression and further visual loss. Whilst advanced forms are easily detected, reliably identifying subclinical disease can be problematic. A number of different machine learning algorithms have been used to improve the detection of subclinical keratoconus based on the analysis of single or multiple clinical measures such as corneal imaging, aberrometry, or biomechanical measurements. OBJECTIVE To survey and critically evaluate the literature on algorithmic detection of subclinical keratoconus and equivalent definitions. METHODS We performed a structured search of the following databases: Medical Literature Analysis and Retrieval System Online (MEDLINE), Excerpta Medica Database (EMBASE), Web of Science and Cochrane from Jan 1, 2010 to Oct 31, 2020. We included all full text studies that have used algorithms for the detection of subclinical keratoconus. We excluded studies that did not perform validation. RESULTS We compared the parameters measured and the design of the machine learning algorithms reported in 26 papers that met the inclusion criteria. All salient information required for detailed comparison including diagnostic criteria, demographic data, sample size, acquisition system, validation details, parameter inputs, machine learning algorithm and key results are reported in this study. CONCLUSIONS Machine learning has the potential to improve the detection of subclinical keratoconus or early keratoconus in routine ophthalmic practice. Presently there is no consensus regarding the corneal parameters that should be included for assessment and the optimal design for the machine learning algorithm. We have identified avenues for further research to improve early detection and stratification of patients for early intervention to prevent disease progression. CLINICALTRIAL N/A


2021 ◽  
Vol 15 (3) ◽  
pp. 877-884
Author(s):  
Md. Merajul Islam ◽  
Md. Jahanur Rahman ◽  
Dulal Chandra Roy ◽  
Most. Tawabunnahar ◽  
Rubaiyat Jahan ◽  
...  

2021 ◽  
Vol 39 (15_suppl) ◽  
pp. 3606-3606
Author(s):  
James M. Kinross ◽  
Pol Canal-Noguer ◽  
Marko Chersicola ◽  
Primož Knap ◽  
Marko Bitenc ◽  
...  

3606 Background: Colorectal cancer (CRC) screening programs suffer from poor uptake and biomarkers have limited diagnostic accuracy. The measurement of the methylation status of tumor-derived cell-free DNA in plasma may address these challenges. We used a targeted methylation panel, tumor-derived signal deduction and machine learning algorithm to refine a blood test for the detection of early-stage CRC. Methods: This was a prospective, international multicenter observational cohort study. Plasma samples were collected either prior to a scheduled colonoscopy as part of standard colorectal cancer screening or prior to colonic surgery for primary CRC. Differentially methylated regions (DMRs) were initially selected by analyzing CRC and control tissue samples with whole genome bisulfite sequencing. A targeted sequencing assay was designed to capture these DMRs in plasma ctDNA. Individual sequencing reads were evaluated for cancer-specific methylation signal and scores calculated for each DMR in a sample. A panel of methylation scores originating from 203 DMRs was used in a prediction model building and validated in a test cohort of patients. Results: Calculated scores were used to train a machine learning model on 68 ctDNA samples from 18 early stage (I-II) and 16 late-stage (III-IV) CRC patients and 34 age, BMI, gender and country of origin matched neoplasia-free controls (median age 63 [50-74], mean BMI 27 [19.5-37], female 50%, Spanish and Ukrainian population, distal cancers 50%). This model was then applied to an independent set of subjects from Spanish, Ukraine and Germany, including 36 stage I-IV cancer patients (median age 61.5 [55-82], BMI 28 [16-39], female 47%, 42% of the tumors were distal) and 159 age and sex matched controls. 87 of the control patients had a negative colonoscopy finding (cNEG), 19 had hyperplastic polyps (HP), 37 had small non-advanced adenomas (NAA) and 16 were diagnosed with other benign gastrointestinal diseases (GID). The model correctly classified 92% (33/36) of CRC patients. Sensitivity per cancer stage ranged from 83% (5/6) for stage I, 92% (11/12) for stage II, 92% (12/13) for stage III to 100% (5/5) for stage IV. Specificity of the model was 97% (154/159), with 100% (37/37) NAA, 94% (15/16) GID, 95% (18/19) HP and 97% cNEG patients correctly identified. Lesion location, gender, BMI, age and country of origin were not significantly correlated to prediction outcome. Conclusions: Methylation sequencing data analyzed using read-wise scoring approach combined with a machine-learning algorithm is highly diagnostic for early-stage (I-II) CRCs (89% sensitivity at 97% specificity). This method could serve as the basis for a highly accurate and minimally invasive blood-based CRC screening test with significant implications for the clinical utility of ctDNA in early-stage cancer detection.


Sign in / Sign up

Export Citation Format

Share Document