scholarly journals Partial Replacement of Cement with Waste Paper Sludge Ash

Author(s):  
Shahid Bashir

Abstract: Cement production is one of the sources that emit carbon dioxide, in addition to deforestation and combustion of fossil fuels also leads to ill effects on environment. The global cement industry accounts for 7% of earth’s greenhouse gas emission. To enhance the environmental effects associated with cement manufacturing and to constantly deplore natural resources, we need to develop other binders to make the concrete industry sustainable. This work offers the option to use waste paper sludge ash as a partial replacement of cement for new concrete. In this study cement in partially replaced as 5%, 10%, 15% and 20% by waste paper sludge ash in concrete for M25 mix and tested for compressive strength, tensile strength, water absorption and dry density up to the age of 28days and compared it with conventional concrete, based on the results obtained, it is found that waste paper ash may be used as a cement replacement up to 5% by weight and the particle size is less the 90µm to prevent reduction in workability. Keywords: slump test, Compressive strength, split tensile strength, water absorption test, Waste Paper Sludge Ash Concrete, Workability.

2012 ◽  
Vol 626 ◽  
pp. 776-780
Author(s):  
Ahmad Ruslan Mohd Ridzuan ◽  
A.A. Khairulniza ◽  
M.A. Fadhil

ncreasing environmental concerns of the cement industry brings about the requirement to the development of new binders. Polymeric concrete containing no cement provides great potential in reducing the global warming problems caused by CO2emissions in Portland cement production. On the other hand, large amount of waste paper sludge ash produced annually in Malaysia has caused a disposal problem as they require a proper dumping process whereby it is very costly. The study focuses on the utilization of this high calcium Waste paper sludge ash (WPSA) in polymeric concrete containing recycled concrete aggregate (RCA). WPSA is chemically activated by a high-alkaline solution to form paste that binds aggregate in the mixture. Sodium hydroxide and sodium silicate solution are used as alkali activators of silica (Si) and aluminium (Al) in main binders. The polymeric concrete samples were exposed to external ambient condition and tested for compressive strength and shrinkage at 3, 7, 28, 56, and 90 days to identify the strength and deformation of the polymeric concrete. X-Ray Fluorescence (XRF) analysis performed to ascertain the chemical properties of the produced WPSA. The result of polymeric concrete yielded very minimum shrinkage. The measurement compressive strength is up to 7MPa at 90 days. Hence, this new green material will bring benefits to the environment and is of economical value.


2014 ◽  
Vol 803 ◽  
pp. 88-92 ◽  
Author(s):  
A.R.M. Ridzuan ◽  
A.A. Khairulniza ◽  
M.A. Fadzil ◽  
J. Nurliza

Waste paper sludge ash (WPSA) is a byproduct that has potential to replace Ordinary Portland Cement (OPC) as a building material. The purpose of this study is to investigate the effect of NaOH concentration on the strength of Waste Paper Sludge Ash (WPSA)-based geopolymer mortar. Initially, the WPSA samples were been analyzed using X-ray Fluorescence (XRF) to determine the chemical composition. From the XRF analysis, the by-product WPSA containing higher amount of calcium, silica and alumina. Alkaline solution are from soluble sodium-based used in geopolymerization are combination of Sodium Hydroxide (NaOH) and Sodium Silicate (Na2SiO3). The mortars samples were cast with various concentration of NaOH and ratio of Na2SiO3 /NaOH which is 2.5. The specimens were carried out on size 50x50x50 mm cube and fresh mortar were been cured at 70 ̊c oven temperature and ambient temperature. The compressive strength tests were conducted after aging the specimen at 3, 7, 14, and 28 days. The results revealed that as the concentration of NaOH increased, the compressive strength of geopolymer mortar increases. However, the optimum NaOH concentration of geopolymer mortar is at 12M. More than 12M concentrations of NaOH were produced high porosity and decreasing the strength. Moreover, curing of fresh geopolymer mortar is performed mostly at an oven temperature compared to ambient temperature due to heat being a reaction accelerator. This paper also present on the morphology, and Energy dispersive x-Ray (EDX) composition analysis of WPSA based geopolymer mortar.


2021 ◽  
Vol 18 (2) ◽  
pp. 89-101
Author(s):  
Aidan Newman ◽  
◽  
Nuradila Izzaty Halim ◽  
Muhd Norhasri Muhd Sidek ◽  
Hamidah Mohd Saman ◽  
...  

High strength concrete (HSC) is an amazing breakthrough in the history of construction material. Due to its high strength, durability, and economic value, it has been used in large-scale construction with a unique structure design not achievable by conventional concrete. However, HSC uses a high amount of cement powder which contributes to its overall strength. However, it will require high cement consumption and increases carbon dioxide emission. Waste paper sludge ash (WPSA) is utilised in cement and has improved concrete properties. Nano engineered WPSA might further enhance HSC capabilities. This research focused on the physical and fresh properties of HSC with partial replacement of nano-engineered WPSA to cement through experimental investigation. The HSC produced in this research has a targeted strength of more than 40MPa with a fixed water-cement ratio of 0.2. The WPSA was oven-dried and was sieved to a particle size of 212 micrometers. Then, it was milled until a nano-size particle is obtained. The nano WPSA is used to replace cement in the HSC mix with a replacement percentage of 1%, 3%, 5%, 7%, and 10%. The new properties of the concrete were measured by conducting the flow table test, and the physical property was determined by conducting the compressive test. Compressive tests were conducted for 1, 3, 7, 14, and 28 days with a cube sample size of 50mm x 50mm x 50mm. This research shows that 1% of nano WPSA replacement tends to improve the compressive strength of the HSC concrete by 10.7% compared to the control sample. On the other hand, the 1% replacement of nano WPSA in HSC did not affect the concrete's workability compared to the control sample. The conventional HSC properties were improved with less usage of cement with the use of WPSA.


2012 ◽  
Vol 626 ◽  
pp. 376-380 ◽  
Author(s):  
Siti Shahidah Sharipudin ◽  
Ahmad Ruslan Mohd Ridzuan

In the effort to produce sustainable concrete, considerable attempt has been placed on replacing the main ingredients in concrete mixtures with more sustainable materials with the objective to reduce the carbon footprint. One of the replacement materials is waste paper sludge ash (WPSA), a local industrial by-product generated abundantly by newsprint mills which possesses considerable cementitious properties. Parallel to this, the high amount of construction waste, particularly concrete waste has become a difficult environmental issue to cope with in todays world. For this reason, recycling of concrete waste as a new alternative aggregate is being effectively utilized in concrete production. Thus, this paper reports on a study conducted to evaluate the compressive strength characteristics of the potential of using WPSA as a binder and fine recycled concrete aggregate (FRCA) as a virgin sand replacement in producing foamed concrete. The findings of this study exhibited that the inclusion of WPSA and FRCA for replacement ratios up to 20% and 15% respectively has significantly influenced the strength properties of foamed concrete.


Sign in / Sign up

Export Citation Format

Share Document