scholarly journals A Review on Effect of Pile Stiffness on Seismic Response of Structure

Author(s):  
Mohit Bharat Dange

Abstract: Pile foundations are widely employed for a variety of structures on shaky ground. The importance of seismic design in ensuring the effective operation of a structure under severe seismic loading conditions cannot be overstated. For the analysis of seismic forces on a structure, IS 1893 will be employed. This research entails the choosing of a specific form of building structure. A comparison of buildings with and without pile foundations will be shown. Because of the differences in their properties, the seismic behaviour of the various structures differs. The influence of pile stiffness on the structure's seismic response will be investigated. The rigidity of the piling foundation could have an impact on the structure.With the rise in seismic activity, there may be a need for more efficient pile foundation design to withstand earthquake loads. The major goal of this study is to compare pile stiffness with changes in diameter and zone. Keywords: Pile Foundation, STAAD-Pro, Structure, Stiffness, zone, Pile Cap, Load Estimation, Pile cap, Pattern of Pile.

Author(s):  
M. J. Pender

Methods of assessing, for preliminary design purposes, the stiffness and capacity of pile foundations under seismic forces are presented. Although the main thrust of the paper is to aseismic design the methods are applicable to other forms of dynamic excitation of pile foundations. Emphasis is placed on expressions for pile stiffness and capacity in the form of simple formulae that can be incorporated into spreadsheet or similar types of software. The use of the equations is illustrated with a number of worked examples. Where possible the methods are justified by data from field testing of foundations at prototype scale.


Vestnik MGSU ◽  
2021 ◽  
pp. 331-339
Author(s):  
Vladimir S. Utkin ◽  
Leonid A. Sushev ◽  
Sergey A. Solovev

Introduction. The paper describes a new approach for pile foundations design. The system of mechanical impacts is described in a new way for the pile foundation design based on the foundation settlement taking into account the distribution of elastic deformation of the pile material in a soil base. Materials and methods. In contrast to the existing approaches to determining the pile settlement due to elastic deformations of the pile material, all impacts in the form of load from the pile cap, friction forces on the pile lateral surface and the actual reaction at the pile tip are taken into account differentially according to the principle of forces independence. The new design equation is proposed to describe the distribution of friction forces on the lateral surface of the pile. The friction forces in a homogeneous soil of the base are represented as a parabolic distribution function, and not as a linearly increasing one, as established in the standards. Results. As a result, the equation is obtained for a pile settlement design due to the elastic strain of pile material. An example of calculating the pile settlement according to the proposed method and comparing the results with existing methods is given. Negative friction forces from the reaction of the soil under the lower end of the pile increase the value of the elastic deformation of the pile shaft. Conclusions. The refined equation for calculating the elastic component of the pile settlement makes it possible to obtain a lower value of the settlement in comparison with the standard approach by taking into account the influence of friction forces of the soil along the pile lateral surface. The proposed method for pile foundations design based on the settlement can serve as a justification for the reserve of the load-bearing capacity of the pile foundation according to the settlement criterion which will allows obtaining a certain economic effect.


2021 ◽  
Author(s):  
Alessandra Gubana ◽  
Massimo Melotto

Abstract The seismic response of existing masonry structures is strongly influenced by floor and roof in-plane properties. An in-plane strengthening intervention is often needed on traditional timber floors to overcome their low in-plane stiffness and to preserve historical buildings. In this study, the effect of un-stiffened and stiffened timber floors on the seismic behaviour of an existing listed masonry building is investigated with dynamic non-linear analyses by means of the Discrete Element Method (DEM). With this approach, the failure processes and collapse sequences of masonry structures can be followed in detail. A previously developed model of the floor cyclic behaviour, based on experimental data, is here applied in the DEM models of the masonry building. Different seismic ground accelerations, different floor types and different wall-to-diaphragm connections are considered. The results highlight the effectiveness of the analysed floor strengthening solution in reducing the out-of-plane displacements of masonry walls. With adequate connections, the reinforced floor is able to transfer the seismic forces to the shear resistant walls up to the shear-sliding collapse of the side walls of the structure. A comparison with the ideal rigid diaphragm case confirms the good performance of the strengthened floors. The small observed out-of-plane displacements are compatible with the masonry wall capacity, and the reinforced floor hysteretic cycles contribute to dissipating part of the input energy. Moreover, different designs of the connections can also cap the transferred seismic forces to an acceptable level for seismic resistant walls.


2009 ◽  
Vol 9 (2) ◽  
pp. 451-458 ◽  
Author(s):  
Y. Parish ◽  
M. Sadek ◽  
I. Shahrour

Abstract. The present study concerns analysis of the seismic response of earth dams. The behaviour of both the shell and core of the dam is described using the simple and popular non associated Mohr-Coulomb criterion. The use of this constitutive model is justified by the difficulty to obtain constitutive parameters for more advanced constitutive relations including isotropic and kinematic hardening. Analyses with real earthquake records show that the seismic loading induces plasticity in a large part of the shell and in the lower part of the core. Analysis shows that plasticity should be considered in the analysis of the seismic response of the dam, because it leads to a decrease in the natural frequencies of the dam together to energy dissipation, which could significantly affect the seismic response of the dam. Plastic analysis constitutes also a good tool for the verification of the stability of the dam under seismic loading.


Author(s):  
Alessandra Gubana ◽  
Massimo Melotto

AbstractThe seismic response of existing masonry structures is strongly influenced by floor and roof in-plane properties. A strengthening intervention is often needed for traditional timber floors to overcome their low in-plane stiffness and to preserve historical buildings. In this study, the effects of unreinforced and reinforced timber floors on the seismic behaviour of an existing listed masonry building are investigated with dynamic non-linear analyses by means of the Discrete Element Method (DEM). With this approach, the failure processes and collapse sequences of masonry structures can be captured in detail. A previously developed model of the floor cyclic behaviour, based on experimental data, is applied herein to DEM models of the masonry building. Different seismic ground accelerations, different floor types and different floor-to-wall connections are considered. The results highlight the effectiveness of the analysed floor strengthening solution in reducing the out-of-plane displacements of masonry walls. With adequate connections, the reinforced floor is able to transfer the seismic forces to the shear-resistant walls up to the shear-sliding collapse of the structural sidewalls. A comparison with the ideal rigid diaphragm case confirms the good performance of the strengthened floors. The small observed out-of-plane displacements are compatible with the masonry wall capacity, and the reinforced floor hysteretic cycles contribute to dissipate part of the input energy. Moreover, different designs of the connections can also cap the transferred seismic forces to an acceptable level for shear-resistant walls.


2008 ◽  
Vol 1 (1) ◽  
pp. 37-46
Author(s):  
Satoshi TAMATE ◽  
Yasuo TOYOSAWA ◽  
Seiji TAKANASHI ◽  
Kazuya ITOH ◽  
Naoaki SUEMASA ◽  
...  

2021 ◽  
Vol 820 (1) ◽  
pp. 012019
Author(s):  
Qingwen Guo ◽  
Baohua Guo ◽  
Yelan Zhu ◽  
Huihui Wang ◽  
Zhe Meng

2009 ◽  
Author(s):  
Ya Li ◽  
Xingnian Chen ◽  
Shejun Fan ◽  
Jean-Louis Briaud ◽  
Hamn-Ching Chen

2016 ◽  
Vol 845 ◽  
pp. 94-99
Author(s):  
Noegroho Djarwanti ◽  
Raden Harya Dananjaya ◽  
Fauziah Prasetyaningrum

In the construction projects, a pile group foundation is often utilized. The group of bored piles is usually installed relatively close to each other and joined at the top by a pile cap to hold up the loads. In other hand, a fast estimation of the groups of piles capacities are needed in the preliminary design and in other conditions of projects, such as a supervisor of projects want to estimate the capacities of the group of piles. The purpose of this research is to study the correlations of groups of piles efficiencies with the number of piles and to compare the groups of piles capacities with the single piles capacities. Furthermore, this study is aimed to make a fast estimation of groups of piles capacities using proposed graphical method.The piles efficiencies are calculated using several methods, such as Simplified Analysis, Converse-Labare [1][2], Los Angeles Group, Seiler - Keeney, Das, and Sayed - Baker. In order to calculate the groups of piles capacities, the capacities of single piles are needed. The singles piles capacities are taken from graphical method proposed by Djarwanti et al. (2015a and 2015b). Three graphical methods utilized are derived from the Briaud et al. (1985) , Reese and Wright (1977), and Reese O’Neill method. Moreover, the proposed graphical method is applied in the case study. The case study takes palace in Graha Indoland Condotel Inside Yogyakarta Construction Project.The pile efficiency graph is recommended for this research since the value of pile efficiency could be easily taken. The value of pile efficiency for Graha Indoland Condotel Inside using Simplified Analysis, Converse - Labare, Los Angeles Group, Seiler – Keeney, Das, and Sayed – Baker are 1,75; 0,89; 0,94; 0,99; 4,00; 1,56 respectively. Meanwhile the value of pile group capacity with the value of pile group efficiency more than 1, showed that the pile group capacity based on the efficiency is bigger than the one based on single down pattern.


2021 ◽  
Vol 143 ◽  
pp. 106657
Author(s):  
Dionisios N. Serras ◽  
Stamatia D. Panagaki ◽  
Konstantinos A. Skalomenos ◽  
George D. Hatzigeorgiou

Sign in / Sign up

Export Citation Format

Share Document