scholarly journals Study of bond coating pre-oxidation heat treatments for high temperature thin film sensors in gas turbine engine applications

2010 ◽  
Author(s):  
Philipp Puetz
2004 ◽  
Author(s):  
Juncheng Xu ◽  
Gary Pickrell ◽  
Bing Yu ◽  
Ming Han ◽  
Yizheng Zhu ◽  
...  

Author(s):  
C. H. White ◽  
J. Heslop

Nickel-chromium alloys have been in use since early in this century for high temperature applications because of their resistance to oxidation. Since the advent of the gas-turbine engine, more complex alloys capable of maintaining high strength at elevated temperatures have been developed from the simple binary system. These complex alloys were initially mainly strengthened by the precipitation of the Ni3(Ti, Al) phase but more recent alloys have been further strengthened by additions of cobalt, tungsten, molybdenum, niobium, and tantalum. The properties and applications of these alloys are discussed.


Author(s):  
Brian Keyes ◽  
Jeffrey Brogan ◽  
Christopher Gouldstone ◽  
Robert Greenlaw ◽  
Jie Yang ◽  
...  

Author(s):  
David A. Shifler ◽  
Dennis M. Russom ◽  
Bruce E. Rodman

501-K34 marine gas turbine engines serve as auxiliary power sources for the U.S. Navy’s DDG-51 Class ships. It is desired that 501-K34 marine gas turbine engines have a mean time between removal of 20K hours. While some engines have approached this goal, others have fallen significantly short. A primary reason for this shortfall is hot corrosion (Type I and Type II) damage in the hot section turbine area due to both intrusion of salts from the marine air and from sulfur in the gas turbine combustion fuels. Previous metallographic examination of several unfailed blades removed from a marine gas turbine engine after 18000 operating hours showed that the coating thickness under the platform and in the curved area of transition between the platform to the blade stem was either very thin, porous, and in a few cases, non-existent on each unfailed blade. Type II hot corrosion was evident at these locations under the platform. Corrosion fatigue cracks initiated at several hot corrosion sites and had advanced through the blade stems to varying degrees. Cracking in a few blades had advanced to the point that blade failure was imminent. The objectives of this paper are to: (1) report the hot corrosion results of alternative high temperature coating systems on Alloy M247 and Alloy 792 for hot section components of the 501-K34 gas turbine engine using a low velocity, atmospheric-pressure burner-rig (LVBR), (2) compare and rank hot corrosion performance of these coatings systems to the baseline coating/substrate system (2) down select the best performing coating systems (in terms of LVBR hot corrosion and thermal cycling resistance) to implement on future hot section components in the 501-K34 engine for the Fleet.


Sign in / Sign up

Export Citation Format

Share Document