scholarly journals About the B-spline wavelet discrete-continual finite element method of the local plate analysis

Vestnik MGSU ◽  
2021 ◽  
pp. 666-675
Author(s):  
Pavel A. Akimov ◽  
Marina L. Mozgaleva ◽  
Taymuraz B. Kaytukov

Introduction. This distinctive paper addresses the local semi-analytical solution to the problem of plate analysis. Isotropic plates featuring the regularity (constancy) of physical and geometric parameters (modulus of elasticity of the plate material, Poisson’s ratio of the plate material, dimensions of the cross section of the plate) along one direction (dimension) are under consideration. This direction is conventionally called the basic direction. Materials and methods. The B-spline wavelet discrete-continual finite element method (DCFEM) is used. The initial operational formulation of the problem was constructed using the theory of distribution and the so-called method of extended domain, proposed by Prof. Alexander B. Zolotov. Results. Some relevant issues of construction of normalized basis functions of the B-spline are considered; the technique of approximation of corresponding vector functions and operators within DCFEM is described. The problem remains continual if analyzed along the basic direction, and its exact analytical solution can be obtained, whereas the finite element approximation is used in combination with a wavelet analysis apparatus in respect of the non-basic direction. As a result, we can obtain a discrete-continual formulation of the problem. Thus, we have a multi-point (in particular, two-point) boundary problem for the first-order system of ordinary differential equations with constant coefficients. A special correct analytical method of solving such problems was developed, described and verified in the numerous papers of the co-authors. In particular, we consider the simplest sample analysis of a plate (rectangular in plan) fixed along the side faces exposed to the influence of the load concentrated in the center of the plate. Conclusions. The solution to the verification problem obtained using the proposed version of wavelet-based DCFEM was in good agreement with the solution obtained using the conventional finite element method (the corresponding solutions were constructed with and without localization; these solutions almost completely coincided, while the advantages of the numerical-analytical approach were quite obvious). It is shown that the use of B-splines of various degrees within wavelet-based DCFEM leads to a significant reduction in the number of unknowns.

Author(s):  
Marina Mozgaleva ◽  
Pavel Akimov ◽  
Taymuraz Kaytukov

Localization of solution of the problem of isotropic plate analysis with the use of B-spline discrete-continual finiteelement method (specificversion of wavelet-based discrete-continual finiteelement method) is under consideration in the distinctive paper. The original operational continual and discrete-continual formulations of the problem are given, some actual aspects of construction of normalized basis functions of a B-spline are considered, the corresponding local constructions for an arbitrary discrete-continual finiteelement are described, some information about the numerical implementation and an example of analysis are presented.


2008 ◽  
Vol 2008.46 (0) ◽  
pp. 1-2
Author(s):  
Yuichi SUGIMOTO ◽  
Satoyuki TANAKA ◽  
Hiroshi OKADA ◽  
Masahiko FUJIKUBO ◽  
Shigenobu OKAZAWA

2017 ◽  
Vol 17 (04) ◽  
pp. 1750051 ◽  
Author(s):  
Wasiu A. Oke ◽  
Yehia A. Khulief

The vibration analysis of composite pipes with internal wall defects due to erosion-induced surface degradation is investigated. The surface defects are treated as discontinuities. The geometry of the discontinuity is permitted to vary within the cross-section both in the angular and radial directions, and to occupy any length of the pipe span. A B-spline wavelet-based finite element method (BWFEM) that takes advantage of the localization properties of wavelets is invoked; thus utilizing its effectiveness in modeling of crack problems and local damages. The composite pipe was treated as beam elements that obey the Euler–Bernoulli beam theory. Unlike the conventional finite element method (FEM), the developed BWFEM uses fewer elements without compromising the accuracy. Numerical simulations are performed to demonstrate the accuracy and efficiency of the developed element through comparison with available results in the literature, as well as results obtained using ANSYS. Some benchmark solutions are obtained for the composite pipe with internal surface defects of different geometries.


2016 ◽  
Vol 685 ◽  
pp. 962-966 ◽  
Author(s):  
Pavel A. Akimov ◽  
Marina L. Mozgaleva ◽  
Mojtaba Aslami ◽  
Oleg A. Negrozov

The distinctive paper is devoted to application of wavelet-based discrete-continual finite element method (WDCFEM), to analysis of plates with piecewise constant physical and geometrical parameters in so-called “basic” direction. Initial continual and discrete-continual formulations of the problem are presented. Due to special algorithms of averaging using wavelet basis within multigrid approach, reduction of the problem is provided. Resultant multipoint boundary problem for system of ordinary differential equations is given.


Sign in / Sign up

Export Citation Format

Share Document