scholarly journals EXACT SOLUTION OF THE PROBLEM OF DEFLECTION OF A TRUSS WITH AN ARBITRARY NUMBER OF PANELS IN THE MAPLE SYSTEM

Author(s):  
Mikhail Kirsanov ◽  
2020 ◽  
pp. 15-19
Author(s):  
M.N. Kirsanov

Formulae are obtained for calculating the deformations of a statically determinate lattice under the action of two types of loads in its plane, depending on the number of panels located along one side of the lattice. Two options for fixing the lattice are analyzed. Cases of kinematic variability of the structure are found. The distribution of forces in the rods of the lattice is shown. The dependences of the force loading of some rods on the design parameters are obtained. Keywords: truss, lattice, deformation, exact solution, deflection, induction, Maple system. [email protected]


2008 ◽  
Vol 08 (01) ◽  
pp. C1-C4 ◽  
Author(s):  
A. P. FLITNEY

In Zeng et al. [Fluct. Noise Lett. 7 (2007) L439–L447] the analysis of the lowest unique positive integer game is simplified by some reasonable assumptions that make the problem tractable for arbitrary numbers of players. However, here we show that the solution obtained for rational players is not a Nash equilibrium and that a rational utility maximizer with full computational capability would arrive at a solution with a superior expected payoff. An exact solution is presented for the three- and four-player cases and an approximate solution for an arbitrary number of players.


1973 ◽  
Vol 63 (1) ◽  
pp. 145-156 ◽  
Author(s):  
A. Cisternas ◽  
O. Betancourt ◽  
A. Leiva

abstract A theoretical analysis of body waves in a “real Earth” is presented. The earth model consists of an arbitrary number of spherical liquid and solid layers. The algebraic part of the analysis deals with the way to obtain generalized rays out of the exact solution. It is shown that the Rayleigh matrix, and not the Rayleigh determinant, should be used to expand the solution into a power series of modified reflection and transmission coefficients in order to obtain rays.


Author(s):  
Tolson H. Bell ◽  
Jerrell M. Cockerham ◽  
Clayton M. Mizgerd ◽  
Melita F. Wiles ◽  
Christian R Scullard

Abstract We present a method for computing transition points of the random cluster model using a generalization of the Newman-Ziff algorithm, a celebrated technique in numerical percolation, to the random cluster model. The new method is straightforward to implement and works for real cluster weight $q>0$. Furthermore, results for an arbitrary number of values of $q$ can be found at once within a single simulation. Because the algorithm used to sweep through bond configurations is identical to that of Newman and Ziff, which was conceived for percolation, the method loses accuracy for large lattices when $q>1$. However, by sampling the critical polynomial, accurate estimates of critical points in two dimensions can be found using relatively small lattice sizes, which we demonstrate here by computing critical points for non-integer values of $q$ on the square lattice, to compare with the exact solution, and on the unsolved non-planar square matching lattice. The latter results would be much more difficult to obtain using other techniques.


2021 ◽  
Vol 72 (1) ◽  
pp. 35-39
Author(s):  
Peter Bokes

Abstract An effective one-dimensional model is presented that describes the temperature profile of a winding of an oil-filled distribution transformer with an arbitrary number of partial cooling ducts. An analytical solution of the model is applied to a specific example — a low voltage winding of a 400 kVA distribution transformer with one or two partial cooling ducts. Starting from the exact solution, a simple and practical formula for the temperature rise of similar windings has been derived that is suitable for transformer designers.


10.37236/1047 ◽  
2006 ◽  
Vol 13 (1) ◽  
Author(s):  
Sarang Aravamuthan ◽  
Sachin Lodha

We consider a popular game puzzle, called Hats-on-a-line, wherein a warden has $n$ prisoners, each one wearing a randomly assigned black or white hat, stand in a line. Thus each prisoner can see the colors of all hats before him, but not his or of those behind him. Everyone can hear the answer called out by each prisoner. Based on this information and without any further communication, each prisoner has to call out his hat color starting from the back of the line. If he gets it right, he is released from the prison, otherwise he remains incarcerated forever. The goal of the team is to devise a strategy that maximizes the number of correct answers. A variation of this problem asks for the solution for an arbitrary number of colors. In this paper, we study the standard Hats-on-a-line problem and its natural extensions. We demonstrate an optimal strategy when the seeing radius and/or the hearing radius are limited. We show for certain orderings that arise from a (simulated) game between the warden and prisoners, how this problem relates to the theory of covering codes. Our investigations lead to two optimization problems related to covering codes in which one leads to an exact solution (for binary codes). For instance, we show that for $0 < k < n$, $(n-k-d) \le \alpha_m n$ where $d = t(n-k, m^k, m)$ is the minimum covering radius of an $m$-ary code of length ($n-k$) and size $m^k$ and $$\alpha_m = {\log m\over \log (m^2 -m +1)}.$$


1986 ◽  
Vol 47 (6) ◽  
pp. 1029-1034 ◽  
Author(s):  
J.C. Parlebas ◽  
R.H. Victora ◽  
L.M. Falicov

Sign in / Sign up

Export Citation Format

Share Document