scholarly journals Weighted Version of Generalized Inverse Weibull Distribution

2019 ◽  
Vol 17 (2) ◽  
Author(s):  
Sofi Mudasir ◽  
S. P. Ahmad

Weighted distributions are used in many fields, such as medicine, ecology, and reliability. A weighted version of the generalized inverse Weibull distribution, known as weighted generalized inverse Weibull distribution (WGIWD), is proposed. Basic properties including mode, moments, moment generating function, skewness, kurtosis, and Shannon’s entropy are studied. The usefulness of the new model was demonstrated by applying it to a real-life data set. The WGIWD fits better than its submodels, such as length biased generalized inverse Weibull (LGIW), generalized inverse Weibull (GIW), inverse Weibull (IW) and inverse exponential (IE) distributions.

Author(s):  
Oseghale O. I. ◽  
Akomolafe A. A. ◽  
Gayawan E.

This work is focused on the four parameters Exponentiated Cubic Transmuted Weibull distribution which mostly found its application in reliability analysis most especially for data that are non-monotone and Bi-modal. Structural properties such as moment, moment generating function, Quantile function, Renyi entropy, and order statistics were investigated. The maximum likelihood estimation technique was used to estimate the parameters of the distribution. Application to two real-life data sets shows the applicability of the distribution in modeling real data.


2014 ◽  
Vol 43 (2) ◽  
pp. 119-131 ◽  
Author(s):  
Faton Merovci ◽  
Ibrahim Elbatal ◽  
Alaa Ahmed

A generalization of the generalized inverse Weibull distribution the so-called transmuted generalized inverse Weibull distribution is proposed and studied. We will use the quadratic rank transmutation map (QRTM) in order to generate a flexible family of probability distributions taking the generalized inverseWeibull distribution as the base value distribution by introducing a new parameter that would offer more distributional flexibility. Various structural properties including explicit expressions for the moments, quantiles, and moment generating function of the new distribution are derived. We propose the method of maximum likelihood for estimating the model parameters and obtain the observed information matrix. A real data set are used to compare the flexibility of the transmuted version versus the generalized inverse Weibull distribution.


Author(s):  
A. A. Ogunde ◽  
Fatoki Olayode ◽  
Audu Adejumoke

In this work, we proposed and studied the Cubic Transmuted Gompertz (CTG) distribution using the Cubic Transmuted family of distributions which was introduced by Rahman et al. [8] and based on cubic transmutation map. We studied the statistical properties of the new distribution which includes: rth moment, moment generating function order statistics, mean, variance, Renyl entropy. The CTG distribution was fitted to a real data set to demonstrate its flexibility and tractability in modelling real life data.


2021 ◽  
Vol 19 (1) ◽  
pp. 2-20
Author(s):  
Piyush Kant Rai ◽  
Alka Singh ◽  
Muhammad Qasim

This article introduces calibration estimators under different distance measures based on two auxiliary variables in stratified sampling. The theory of the calibration estimator is presented. The calibrated weights based on different distance functions are also derived. A simulation study has been carried out to judge the performance of the proposed estimators based on the minimum relative root mean squared error criterion. A real-life data set is also used to confirm the supremacy of the proposed method.


2020 ◽  
Vol 18 (2) ◽  
pp. 2-13
Author(s):  
Oyebayo Ridwan Olaniran ◽  
Mohd Asrul Affendi Abdullah

A new Bayesian estimation procedure for extended cox model with time varying covariate was presented. The prior was determined using bootstrapping technique within the framework of parametric empirical Bayes. The efficiency of the proposed method was observed using Monte Carlo simulation of extended Cox model with time varying covariates under varying scenarios. Validity of the proposed method was also ascertained using real life data set of Stanford heart transplant. Comparison of the proposed method with its competitor established appreciable supremacy of the method.


2021 ◽  
Vol 9 (1) ◽  
pp. 8-15
Author(s):  
Deepshikha Deka ◽  
Bhanita Das ◽  
Bhupen K Baruah ◽  
Bhupen Baruah

The use of calibration estimation techniques in survey sampling have been found to improve the precision of estimators. This paper adopts the calibration approach with the assumption that the population median of the auxiliary variable is known to obtain a more efficient ratio-type estimator in estimating population median in stratified sampling. Conditions necessary for efficiency comparison have been obtained which show that the proposed estimator will always perform better than the existing asymptotically unbiased separate estimators in stratified random sampling. Numerical evaluations have been carried out through simulation and real-life data to compliment the theoretical claims. Results from the simulation study carried out under three distributional assumptions, namely the chi square, lognormal and Cauchy distributions with different sample settings showed that the new estimator provided better estimate of the median with greater gain in efficiency. In addition, result from the real-life data further supports the superiority of the proposed estimator over the existing ones considered in this study.


Author(s):  
Uchenna U. Uwadi ◽  
Elebe E. Nwaezza

In this study, we proposed a new generalised transmuted inverse exponential distribution with three parameters and have transmuted inverse exponential and inverse exponential distributions as sub models. The hazard function of the distribution is nonmonotonic, unimodal and inverted bathtub shaped making it suitable for modelling lifetime data. We derived the moment, moment generating function, quantile function, maximum likelihood estimates of the parameters, Renyi entropy and order statistics of the distribution. A real life data set is used to illustrate the usefulness of the proposed model.     


Author(s):  
Adebisi Ade Ogunde ◽  
Gbenga Adelekan Olalude ◽  
Donatus Osaretin Omosigho

In this paper we introduced Gompertz Gumbel II (GG II) distribution which generalizes the Gumbel II distribution. The new distribution is a flexible exponential type distribution which can be used in modeling real life data with varying degree of asymmetry. Unlike the Gumbel II distribution which exhibits a monotone decreasing failure rate, the new distribution is useful for modeling unimodal (Bathtub-shaped) failure rates which sometimes characterised the real life data. Structural properties of the new distribution namely, density function, hazard function, moments, quantile function, moment generating function, orders statistics, Stochastic Ordering, Renyi entropy were obtained. For the main formulas related to our model, we present numerical studies that illustrate the practicality of computational implementation using statistical software. We also present a Monte Carlo simulation study to evaluate the performance of the maximum likelihood estimators for the GGTT model. Three life data sets were used for applications in order to illustrate the flexibility of the new model.


Sign in / Sign up

Export Citation Format

Share Document