scholarly journals Anatomization of Irrigation water quality parameters of Chaka block, Yamuna river bank, Prayagraj, Uttar Pradesh, India

2021 ◽  
Vol 9 (2) ◽  
pp. 36-40
Author(s):  
Iska Srinath Reddy ◽  
Arun A David ◽  
P Srinidhi
Author(s):  
Wei-Jhan Syu ◽  
Tsun-Kuo Chang ◽  
Shu-Yuan Pan

In order to provide the real-time monitoring for identifying the sources of pollution and improving the irrigation water quality management, the integration of continuous automatic sampling techniques and cloud technologies is essential. In this study, we have established an automatic real-time monitoring system for improving the irrigation water quality management, especially for heavy metals such as Cd, Pb, Cu, Ni, Zn, and Cr. As a part of this work, we have first provided several examples on the basic water quality parameters (e.g., pH and electrical conductance) to demonstrate the capacity of data correction by the smart monitoring system, and then evaluated the trend and variance of water quality parameters for different types of monitoring stations. By doing so, the threshold (to initiate early warming) of different water quality parameters could be dynamically determined by the system, and the authorities could be immediately notified for follow-up actions. We have also provided and discussed the representative results from the real-time automatic monitoring system of heavy metals from different monitoring stations. Finally, we have illustrated the implications of the developed smart monitoring system for ensuring the safety of irrigation water in the near future, including integration with automatic sampling for establishing information exchange platform, estimating fluxes of heavy metals to paddy fields, and combining with green technologies for nonpoint source pollution control.


2021 ◽  
Vol 09 (10) ◽  
pp. 151-160
Author(s):  
Phenias Mukiza ◽  
Jean De Dieu Bazimenyera ◽  
Jean Paul Nkundabose ◽  
Rose Niyonkuru ◽  
Nelly Elias Bapfakurera

Author(s):  
Runit Isaac ◽  
Shaziya Siddiqui

Abstract In this research, Water Quality Index and Multivariate Statistics Techniques was carried out on fourteen water quality parameters collected quarterly (four times/year) from nine water sources in Agra, Uttar Pradesh, India for one year (May 2019- April 2020). The Water Quality Parameters (WQP) included are the concentration of hydrogen ion (pH), Electrical conductivity, Turbidity, Total dissolved solids (TDS), Total Hardness, Total Alkalinity, Calcium, Sulphate, Chloride, Magnesium, Iron, COD, DO, and BOD. The Water sample collected shows that the mean values of physicochemical parameters are in the range of WHO and BIS except for Hardness in summer (1,680 mg/L); monsoon (832.22 mg/L); winter (1,876.66 mg/L); spring (1,535.55 mg/L), TDS in summer (1,000.33 mg/L); monsoon (683.44 mg/L); winter (1,087.66 mg/L); spring (776.66 mg/L) and sulphate (927.22 mg/L); monsoon (446.77 mg/L); winter (925.77 mg/L); spring (944.88 mg/L) which indicate the bad quality of water. The WQI values were calculated for three locations at different weather conditions. WQI values in summer, winter and spring are 630.90, 279.61, 279.91 shows that river water is not suitable for drinking purpose whereas the WQI value in monsoon is 75.89 shows that water is fit for drinking purposes due to the dilution of river water. A moderate positive correlation was observed for turbidity with total hardness, iron, total alkalinity, and sulphate. Negative Correlation was observed with pH. Moderate Correlation was seen with TDS-EC (0.608), TDS-Alkalinity (0.7794), EC-Ca (0.723) and strong was observed for BOD-DO (0.941) and Ca-Mg (0.999). Principal Component Analysis revealed that five factors were significant (eigen value > 0.5) with total variance of 39.43%–85.19% respectively. The ICP-MS study of water sample from point source indicate the presence of Ni2+, Cr6+, Co2+, Mn2+, Cu2+, Zn2+ ions at higher concentrations.


Agropedology ◽  
2019 ◽  
Vol 29 (2) ◽  
Author(s):  
G.S. Tagore ◽  
◽  
H. K. Rai ◽  

Recent past has witnessed ever increasing importance of water in agricultural development that necessitates precise assessment of spatial variability in irrigation water quality of ground water resources and its optimal utilization. Present study was aimed to characterize the variability in quality of irrigation water across the Rewa district of Madhya Pradesh using geo-statistical techniques. The results are compared with univariate interpolation algorithms such as ordinary kriging and inverse distance weighing. The comparisons were performed with cross validation at sampling locations and assessed based on mean and root means squared errors. The results revealed that all the physico-chemical parameters exist within the permissible limits as per the standards hence quality of water is safe for irrigation purposes.


2013 ◽  
Vol 33 (5) ◽  
pp. 1024-1037 ◽  
Author(s):  
Suzana C. Wrublack ◽  
Erivelto Mercante ◽  
Marcio A. Vilas Boas

The objective of this study consisted on mapping the use and soil occupation and evaluation of the quality of irrigation water used in Salto do Lontra, in the state of Paraná, Brazil. Images of the satellite SPOT-5 were used to perform the supervised classification of the Maximum Likelihood algorithm - MAXVER, and the water quality parameters analyzed were pH, EC, HCO3-, Cl-, PO4(3-), NO3-, turbidity, temperature and thermotolerant coliforms in two distinct rainfall periods. The water quality data were subjected to statistical analysis by the techniques of PCA and FA, to identify the most relevant variables in assessing the quality of irrigation water. The characterization of soil use and occupation by the classifier MAXVER allowed the identification of the following classes: crops, bare soil/stubble, forests and urban area. The PCA technique applied to irrigation water quality data explained 53.27% of the variation in water quality among the sampled points. Nitrate, thermotolerant coliforms, temperature, electrical conductivity and bicarbonate were the parameters that best explained the spatial variation of water quality.


2015 ◽  
Vol 8 (1) ◽  
pp. 85-89
Author(s):  
F Zannat ◽  
MA Ali ◽  
MA Sattar

A study was conducted to evaluate the water quality parameters of pond water at Mymensingh Urban region. The water samples were collected from 30 ponds located at Mymensingh Urban Region during August to October 2010. The chemical analyses of water samples included pH, EC, Na, K, Ca, S, Mn and As were done by standard methods. The chemical properties in pond water were found pH 6.68 to 7.14, EC 227 to 700 ?Scm-1, Na 15.57 to 36.00 ppm, K 3.83 to 16.16 ppm, Ca 2.01 to 7.29 ppm, S 1.61 to 4.67 ppm, Mn 0.33 to 0.684 ppm and As 0.0011 to 0.0059 ppm. The pH values of water samples revealed that water samples were acidic to slightly alkaline in nature. The EC value revealed that water samples were medium salinity except one sample and also good for irrigation. According to drinking water standard Mn toxicity was detected in pond water. Considering Na, Ca and S ions pond water was safe for irrigation and aquaculture. In case of K ion, all the samples were suitable for irrigation but unsuitable for aquaculture.J. Environ. Sci. & Natural Resources, 8(1): 85-89 2015


Sign in / Sign up

Export Citation Format

Share Document