scholarly journals Magnetic fields in the Universe and prospects for future probes

2008 ◽  
Author(s):  
Philipp Kronberg
Keyword(s):  
2021 ◽  
Vol 34 (3) ◽  
pp. 315-321
Author(s):  
Farzad Haghmoradi-Kermanshahi

This article claims that the universe is composed of very fine particles, which are billions of times smaller than electrons. These particles consist of one positive pole and one negative pole similar to protons and electrons (in terms of electrical charge), respectively. They are point electric charges, which their movements and bending of their chain in space create magnetic fields and electromagnetic waves. These particles possess mass that verges on zero, due to their minute size. Then, by examining several physical phenomena, the presence of them will be proved.


2018 ◽  
Vol 14 (A30) ◽  
pp. 295-298
Author(s):  
Tina Kahniashvili ◽  
Axel Brandenburg ◽  
Arthur Kosowsky ◽  
Sayan Mandal ◽  
Alberto Roper Pol

AbstractBlazar observations point toward the possible presence of magnetic fields over intergalactic scales of the order of up to ∼1 Mpc, with strengths of at least ∼10−16 G. Understanding the origin of these large-scale magnetic fields is a challenge for modern astrophysics. Here we discuss the cosmological scenario, focussing on the following questions: (i) How and when was this magnetic field generated? (ii) How does it evolve during the expansion of the universe? (iii) Are the amplitude and statistical properties of this field such that they can explain the strengths and correlation lengths of observed magnetic fields? We also discuss the possibility of observing primordial turbulence through direct detection of stochastic gravitational waves in the mHz range accessible to LISA.


2015 ◽  
Vol 11 (S317) ◽  
pp. 274-275
Author(s):  
Alexander M. Beck

AbstractMagnetic fields are observed on all scales in the Universe (see e.g. Kronberg 1994), but little is known about the origin and evolution of those fields with cosmic time. Seed fields of arbitrary source must be amplified to present-day values and distributed among cosmic structures. Therefore, the emergence of cosmic magnetic fields and corresponding dynamo processes (see e.g. Zel'dovich et al. 1983; Kulsrud et al. 1997) can only be jointly understood with the very basic processes of structure and galaxy formation (see e.g. Mo et al. 2010).


2008 ◽  
Vol 4 (S259) ◽  
pp. 529-538 ◽  
Author(s):  
Eduardo Battaner ◽  
Estrella Florido

AbstractThere is increasing evidence that intense magnetic fields exist at large redshifts. They could arise after galaxy formation or in very early processes, such as inflation or cosmological phase transitions, or both. Early co-moving magnetic strengths in the range 1-10 nG could be present at recombination. The possibilities to detect them in future CMB experiments are discussed, mainly considering their impact in the anisotropy spectra as a result of Faraday rotation and Alfven waves. Magnetic fields this magnitude could also have a non-negligible influence in determining the filamentary large scale structure of the Universe.


2015 ◽  
Vol 112 (27) ◽  
pp. 8211-8215 ◽  
Author(s):  
Jena Meinecke ◽  
Petros Tzeferacos ◽  
Anthony Bell ◽  
Robert Bingham ◽  
Robert Clarke ◽  
...  

The visible matter in the universe is turbulent and magnetized. Turbulence in galaxy clusters is produced by mergers and by jets of the central galaxies and believed responsible for the amplification of magnetic fields. We report on experiments looking at the collision of two laser-produced plasma clouds, mimicking, in the laboratory, a cluster merger event. By measuring the spectrum of the density fluctuations, we infer developed, Kolmogorov-like turbulence. From spectral line broadening, we estimate a level of turbulence consistent with turbulent heating balancing radiative cooling, as it likely does in galaxy clusters. We show that the magnetic field is amplified by turbulent motions, reaching a nonlinear regime that is a precursor to turbulent dynamo. Thus, our experiment provides a promising platform for understanding the structure of turbulence and the amplification of magnetic fields in the universe.


2010 ◽  
Vol 6 (S274) ◽  
pp. 340-347 ◽  
Author(s):  
Luigina Feretti ◽  
Gabriele Giovannini ◽  
Federica Govoni ◽  
Matteo Murgia

AbstractThe first detection of a diffuse radio source in a cluster of galaxies, dates back to the 1959 (Coma Cluster, Large et al. 1959). Since then, synchrotron radiating radio sources have been found in several clusters, and represent an important cluster component which is linked to the thermal gas. Such sources indicate the existence of large scale magnetic fields and of a population of relativistic electrons in the cluster volume. The observational results provide evidence that these phenomena are related to turbulence and shock-structures in the intergalactic medium, thus playing a major role in the evolution of the large scale structure in the Universe. The interaction between radio sources and cluster gas is well established in particular at the center of cooling core clusters, where feedback from AGN is a necessary ingredient to adequately describe the formation and evolution of galaxies and host clusters.


Sign in / Sign up

Export Citation Format

Share Document