scholarly journals The basic theory of bipolars existence and their role in the examination of electric and magnetic fields

2021 ◽  
Vol 34 (3) ◽  
pp. 315-321
Author(s):  
Farzad Haghmoradi-Kermanshahi

This article claims that the universe is composed of very fine particles, which are billions of times smaller than electrons. These particles consist of one positive pole and one negative pole similar to protons and electrons (in terms of electrical charge), respectively. They are point electric charges, which their movements and bending of their chain in space create magnetic fields and electromagnetic waves. These particles possess mass that verges on zero, due to their minute size. Then, by examining several physical phenomena, the presence of them will be proved.

2021 ◽  
Vol 34 (2) ◽  
pp. 236-247
Author(s):  
Huawang Li

In this paper, we conjecture that gravitation, electromagnetism, and strong nuclear interactions are all produced by particle collisions by determining the essential concept of force in physics (that is, the magnitude of change in momentum per unit time for a group of particles traveling in one direction), and further speculate the existence of a new particle, Yizi. The average kinetic energy of Yizi is considered to be equal to Planck’s constant, so the mass of Yizi is calculated to be <mml:math display="inline"> <mml:mrow> <mml:mn>7.37</mml:mn> <mml:mo>×</mml:mo> <mml:msup> <mml:mrow> <mml:mn>10</mml:mn> </mml:mrow> <mml:mrow> <mml:mo>−</mml:mo> <mml:mn>51</mml:mn> </mml:mrow> </mml:msup> </mml:mrow> </mml:math> kg and the average velocity of Yizi is <mml:math display="inline"> <mml:mrow> <mml:mn>4.24</mml:mn> <mml:mo>×</mml:mo> <mml:msup> <mml:mrow> <mml:mn>10</mml:mn> </mml:mrow> <mml:mn>8</mml:mn> </mml:msup> </mml:mrow> </mml:math> m/s. The universe is filled with Yizi gas, the number density of Yizi can reach <mml:math display="inline"> <mml:mrow> <mml:mn>1.61</mml:mn> <mml:mo>×</mml:mo> <mml:msup> <mml:mrow> <mml:mn>10</mml:mn> </mml:mrow> <mml:mrow> <mml:mn>64</mml:mn> </mml:mrow> </mml:msup> </mml:mrow> </mml:math> /m3, and Yizi has no charge. After abandoning the idealism of physics, I try to construct a physical framework from three elementary particles: Protons, electrons, and Yizis. (The elementary particles mentioned here generally refer to the indivisible particles that constitute objects.) The effects of Yizi on the conversion of light, electricity, magnetism, mass, and energy as well as the strong nuclear and electromagnetic forces are emphasized. The gravitation of electromagnetic waves is measured using a Cavendish torsion balance. It is shown experimentally that electromagnetic waves not only produce pressure (repulsion) but also gravitational forces upon objects. The universe is a combination of three fundamental particles. Motion is eternal and follows the laws of conservation of energy and momentum. There is only one force: The magnitude of change in momentum per unit time for a group of particles traveling in one direction. Furthermore, this corresponds to the magnitude of the force that the group of particles exerts in that direction. From this perspective, all physical phenomena are relatively easy to explain.


The information about the ASONIKA-EMC program, intended for calculating the distribution of electric and magnetic fields intensity inside and outside of the electronic devices housings, as well as for determining the ef¬fectiveness of shielding electric and magnetic fields at effect of the electromagnetic waves in the frequency range 10...30 000 MHz, is adduced. Functional capabilities are described, an example of calculation and analysis of calculation results is adduced. Keywords: radio engineering device; modeling; electric field; magnetic field; electric field intensity; magnetic field strength; shielding.


Geophysics ◽  
1957 ◽  
Vol 22 (1) ◽  
pp. 75-88 ◽  
Author(s):  
Bimal Krishna Bhattacharyya

Transient electric and magnetic fields have been calculated for ramp function and sawtooth current sources immersed in a semi‐conducting medium. An electric dipole source has been assumed. In the case of ramp function input, it is observed that the peaks of the overshoots in the θ‐component of the electric field decrease in magnitude with the increase in rise time of the input pulse. It has also been shown that the rise time of the current pulses has definite effect upon the rise time and amplitude of the electric fields and that the sawtooth exciting pulses having large values of rise time may be conveniently used to obtain measurable values of the electric and magnetic fields.


2011 ◽  
Vol 2011 ◽  
pp. 1-10
Author(s):  
Zhiwen Cui ◽  
Jinxia Liu ◽  
Yujun Zhang ◽  
Kexie Wang ◽  
Hengshan Hu

In a fluid-saturated porous formation, acoustics and electromagnetic waves are coupled based on Pride seismoelectric theory. An exact treatment of the nonaxisymmetric seismoelectric field excited by acoustic multipole sources is presented. The frequency wavenumber domain representations of the acoustic field and associated seismoelectric field due to acoustic multipole sources are formulated. The full waveforms of acoustic waves and electric and magnetic fields in the time domain propagation in borehole are simulated by using discrete wave number integration, and frequency versus axial-wave number responses are presented and analyzed.


Sign in / Sign up

Export Citation Format

Share Document