scholarly journals Transverse target spin asymmetries on a proton target at COMPASS - on behalf of the COMPASS collaboration

2010 ◽  
Author(s):  
Andreas RICHTER
2017 ◽  
Vol 768 ◽  
pp. 168-173 ◽  
Author(s):  
A. Kim ◽  
H. Avakian ◽  
V. Burkert ◽  
K. Joo ◽  
W. Kim ◽  
...  

2009 ◽  
Vol 24 (35n37) ◽  
pp. 3033-3044 ◽  
Author(s):  
◽  
OLEG DENISOV

The study of Drell–Yan (DY) processes involving the collision of an (un)polarised hadron beam on an (un)polarised proton target can result in a fundamental improvement of our knowledge on the transverse momentum dependent (TMDs) parton distribution functions (PDFs) of hadrons. The production mechanism of J/ψ and J/ψ - DY duality can also be addressed. One of the forthcoming polarised DY experiments (COMPASS (SPS, CERN)) is discussed in this context. The most important features of this project are briefly reviewed, as well as its sensitivity to the various transverse momentum dependent spin asymmetries.


2016 ◽  
Vol 40 ◽  
pp. 1660045 ◽  
Author(s):  
Zhun Lu ◽  
Wenjuan Mao

The single-spin asymmetry [Formula: see text] of charged and neutral pion production in semi-inclusive deep-inelastic scattering on longitudinally polarized nucleon targets is studied. We particularly consider the effects of the twist-3 transverse-momentum dependent distribution functions [Formula: see text] and [Formula: see text], which are calculated in two different spectator-diquark models. We estimate the asymmetry for [Formula: see text], [Formula: see text] and [Formula: see text] produced off the proton target at HERMES and compare the results with the HERMES measurements. We also predict the same asymmetric moment for different pions at the kinematics of CLAS 5.5 GeV on a proton target, as well as at COMPASS on a deuteron target for comparison.


2003 ◽  
Vol 18 (08) ◽  
pp. 1381-1390
Author(s):  
BO-QIANG MA

The quark transversity distributions are discussed in a light-cone SU(6) quark-diquark model and in a perturbative QCD based analysis. The azimuthal spin asymmetries, both for charged and neutral pion production in semi-inclusive deep inelastic scattering of unpolarized charged lepton beams on longitudinally and transversely polarized nucleon targets, are analyzed. It is found that different approaches to the distribution and fragmentation functions may lead to quite different predictions. It is also found that the unfavored quark to pion fragmentation functions should be taken into account for π- production from a proton target.


2021 ◽  
Vol 103 (3) ◽  
Author(s):  
Siddhesh Padval ◽  
Rohini M. Godbole ◽  
Abhiram Kaushik ◽  
Anuradha Misra ◽  
Vaibhav S. Rawoot

2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Miguel G. Echevarria ◽  
Zhong-Bo Kang ◽  
John Terry

Abstract We perform global fit to the quark Sivers function within the transverse momentum dependent (TMD) factorization formalism in QCD. We simultaneously fit Sivers asymmetry data from Semi-Inclusive Deep Inelastic Scattering (SIDIS) at COMPASS, HERMES, and JLab, from Drell-Yan lepton pair production at COMPASS, and from W/Z boson at RHIC. This extraction is performed at next-to-leading order (NLO) and next-to-next-to leading logarithmic (NNLL) accuracy. We find excellent agreement between our extracted asymmetry and the experimental data for SIDIS and Drell-Yan lepton pair production, while tension arises when trying to describe the spin asymmetries of W/Z bosons at RHIC. We carefully assess the situation, and we study in details the impact of the RHIC data and their implications through different ways of performing the fit. In addition, we find that the quality of the description of W/Z vector boson asymmetry data could be strongly sensitive to the DGLAP evolution of Qiu-Sterman function, besides the usual TMD evolution. We present discussion on this and the implications for measurements of the transverse-spin asymmetries at the future Electron Ion Collider.


2011 ◽  
Vol 98 (4) ◽  
pp. 042503 ◽  
Author(s):  
Tomohiro Taniguchi ◽  
Hiroshi Imamura ◽  
Tomoya M. Nakatani ◽  
Kazuhiro Hono

Sign in / Sign up

Export Citation Format

Share Document